

Flood Risk Assessment

Land South of Kings Head PH, Lower Horsebridge, Hailsham BN27 4DH

Client

Abtec Limited c/o Decimus Ltd 1 Lonsdale Gardens Tunbridge Wells Kent TN1 1NU Ref: 10273 Date: November 2019

Consulting Engineers

GTA Civils Ltd Gloucester House 66a Church Walk Burgess Hill West Sussex RH15 9AS

Tel: 01444 871444

Index

1	Introduction	2
2	Existing Site and Current Flood Conditions	3
3	Proposed Development & SuDS Drainage Strategy	5

Schedule of Appendices

- A Site Location Maps & Aerial Photo
- B Topographic Survey & Sewer Records
- C Environment Agency Flood Maps
- D Soakaway Tests
- E Proposed Scheme Drawings
- F East Sussex Highways Correspondence
- G Micro Drainage Calculation Sheets
- H SuDS Maintenance Plan

Issue	Issue date	Compiled	Checked
Preliminary Issue	27 November 2019	JP	MR
First Issue	28 November 2019	JP	MR
Second Issue	1 May 2020	PH	MR

1 Introduction

- 1.1 This report has been prepared for Abtec Limited in relation to the proposed development at land to the south of Kings Head Public House, Lower Horsebridge, Hailsham BN27 4DH; no responsibility is accepted to any third party for all or part of this study in connection with this or any other development.
- 1.2 GTA Civils and Transport was appointed by its client to provide a Flood Risk Assessment (FRA) to support the planning application for 10 dwelling units at the subject site.
- 1.3 This report will take the form of a formal Flood Risk Assessment in accordance with the 2019 National Planning Policy Framework (NPPF) and the current Planning Practice Guidance (PPG). Reference has been made of the Strategic Flood Risk Assessment published by Wealden District Council (WDC).
- 1.4 This FRA (First Issue, November 2019) accompanied the planning submission to WDC (application ref: WD/2017/2419/MAJ). Comments were received from East Sussex County Council (ESCC) in its role as the Lead Local Flood Authority (LLFA), a statutory consultee. This FRA has now been updated to address the LLFA comments as follows:
 - Revision to proposed outfall location to allay downstream flood risk concerns.
 - Remove private driveways from the proposed permeable paving storage cell.
 - Mitigation for risk of groundwater affecting the permeable paving storage cell.

2 Existing Site and Current Flood Conditions

- 2.1 The application site is a vacant greenfield plot situated on the west side of and is accessed from
 the A271 highway in Lower Horsebridge. This area is administered by Wealden District Council (WDC). Refer to Appendix A for location plans and an aerial view.
- 2.2 A Topographical Survey of the site is contained in Appendix B. The site has a gentle east to west gradient with levels ranging between 18.5m AOD and 18.05m AOD. The average gradient is approximately 1 in 75.
- 2.3 Hydrology: The site lies approximately 170m to the north of the River Cuckmere, which flows south and then westwards around the site. An unnamed brook flows southwest, some 90m at its closest to the SE corner. Both of these watercourses are shown on the first site location map in Appendix A. The site is served by a ditch that runs along the south boundary.
- 2.4 Geology: The British Geological Society (BGS) online geological map shows the bedrock is Weald Clay; a drift stratum of River Terrace Deposits (sand and gravel) overlies this.
- 2.5 2 BRE Digest 365 tests were undertaken at different parts of the site. The report is shown in Appendix D. The water level *rose*, not *fell* the measurements started once water was encountered at 1.5m bgl. The conclusion by the geotechnical engineer (author of the report) was that soakage is not viable on this site.
- 2.6 The WDC drainage engineer advised that the site's proximity to the Cuckmere would throw sufficient doubt on infiltration methods being viable. This was stated without prior knowledge of the soakage testing.
- 2.7 Southern Water's sewer records for this area are shown in Appendix B. There is no public surface water sewer in this part of Lower Horsebridge.
- 2.8 The sewer records show a 300mm diameter foul sewer passing through the northeast corner of the site. (This will have to be diverted). As the invert level of the downstream sewer manhole (ref 8304) is 12.43m AOD, well over 4m below the site's lowest level, any flow into it will be under gravity.
- 2.9 The existing greenfield runoff rate (Q_{BAR}) for this small site is 0.7l/s. This is less than the practical minimum limit of vortex restriction devices. See Appendix G for the calculation sheet.
- 2.10 According to the Environment Agency's Rivers and Seas Flood Map (see Appendix C), the vast majority of the site lies in Flood Zone 1 (Low Risk). Sites in FZ1 are defined in Table 1 of the National

Planning Policy Framework's (NPPF) as being susceptible to flooding with an annual probability (AEP) of >0.1% (less often than once every 1000 years on average). There is a very narrow strip along the south half of the east boundary in Flood Zone 2 (FZ2). Inland sites in FZ2 are liable to flood with an annual expectation of between 0.1% and 1% (between once every 1000 years and 100 years on average).

- 2.11 An excerpt from the EA's modelled data-pack shows the 2D nodes at the SE corner of the site see Appendix C. The greater of the 2 flood depths in the extreme storm is 0.29m. As this flood pattern is limited to the hedge along the boundary, this is of little concern.
- 2.12 Surface Water flooding: this can occur when excess rainwater does not infiltrate into the ground, or is not intercepted by urban drainage systems, and instead flows across the surface. The EA's Surface Water Flood Map for the Low Risk scenario (1000 years) is shown in Appendix C. The site is removed from this risk.
- 2.13 Artificial sources: flooding from reservoirs, canals and docks. The EA's Reservoirs Flood Map in Appendix C shows that the site is removed from this source of flooding. There are no docks or canals in this area.
- 2.14 Historic records: the EA's online map in Appendix C shows that this site is removed from the nearest area of recorded flooding by the EA.
- 2.15 WDC's Strategic Flood Risk Assessment (SFRA) does not show any evidence of historical flood incidents on or near to the site.
- 2.16 In conclusion the flood risk profile of this site is effectively Low. The small area in FZ2 near to the SE corner is in amenity space effectively within the confines of the site boundary hedge.
- 2.17 Site visits and surveys carried out in February 2020 confirmed that the ditch downstream of the site boundary is waterlogged due to poor management. A 450mm diameter highway drain runs north to south along the land boundary with the recreation ground to the west. The outfall of this drain into the ditch occurs around 30m south of the application site, but was observed to be submerged in February 2020.
- 2.18 The land between the site and the Cuckmere River is open fields. There are no buildings or property affected by this localised flooding issue, neither does it impact upon the proposed development. However, it is a consideration for the proposed surface water discharge from the development.

3 Proposed Development & SuDS Drainage Strategy

- 3.1 The proposed development is to demolish all the existing building stock and erect 10 new dwellings. Appendix E shows the scheme drawings.
- 3.2 The Sequential Test: the majority of the site lies in fluvial FZ1 with only a very small proportion in FZ2. Although this scheme should have to pass the Sequential Test, strictly speaking, it is clear that there is no problem with the development being safe, ie the scheme passes the second part of the Exception Test.
- 3.3 The flood risk profile of the site is Low, as concluded in section 2.13 above. The small area liable to flood in the extreme storm is limited to water compatible use.
- 3.4 Surface water drainage: The SuDS hierarchy was applied. Due to the artesian pressure causing a rise in water level during the first 30 minutes in each of the 2 soakage tests it was concluded that infiltration is not viable here. A drainage strategy has been drawn up for the development with an off-site surface water discharge.
- 3.5 The existing off-site runoff route is via the ditch which runs west along the southern boundary of the site. At the south-west corner the ditch peters out and flow spreads southwards overland and then into the downstream ditch. The LLFA raised concern that re-use of this route for development runoff will exacerbate the existing localised flooding downstream and potentially compromise the Highway drainage assets due to erosion.
- 3.6 Following discussions with the LLFA and East Sussex Highways (ESH) regarding this problem, it has been agreed in principle that development runoff should be discharged into the existing 450mm highway drain. A copy of email correspondence from the ESH engineer is included in Appendix F.
- 3.7 The proposed connection is illustrated on the proposed drainage strategy layout in Appendix E. The detail of the proposed connection is to be agreed at the next stage. Any repairs, remediation or improvements required for the highway drainage system to accommodate the development discharge will also be identified at the next stage along with a plan for implementation, including remedial maintenance of the downstream ditch. Provisionally the physical works will be carried out by ESH and funded by the developer. It is suggested that this information be covered by a suitably worded condition.
- 3.8 The proposed development discharge rate is 2 l/s. This is a practical minimum flow rate for small catchments balancing the risk of blockage associated with small orifice diameters. Although the greenfield Q_{BAR} rate is 0.7 l/s, the greenfield 1:100 year rate is 2.4 l/s (see Appendix G). Therefore,

the proposed maximum rate of 2 l/s still provide a betterment during extreme storm events. A vortex flow control device will be installed in the chamber at the south-west of the development area.

- 3.9 Attenuation storage volume will be provided within the permeable pavement cell comprising the communal road areas. Private driveways have been removed from this storage cell as requested by the LLFA officer. The pavement construction will be 0.68m overall (cover level 18.280m AOD, invert level 17.600m AOD), providing 90m³ of storage capacity. The sub-base material will provide filter out pollutant to protect water quality downstream. The layout of the permeable paving is shown in Appendix E.
- 3.10 The soakaway tests were each excavated to 1.5m below ground level (bgl) and water ingress occurred in each test pit due to sub-artesian pressure. Assuming 1.5m bgl as the water table depth equates to a level of 16.8m AOD at TP1 and 16.5m AOD at TP2.
- 3.11 Indicative site sections are included in Appendix E which show the development area's existing ground levels are higher than the surrounding land in all directions. This makes it very unlikely that groundwater could rise sufficiently to affect the proposed permeable paving cell which has an invert of 17.600m AOD. Nonetheless, a simple network of land drainage beneath the liner of the paving sub-base is included in the design. The land drainage system will outfall to the boundary ditch as shown in Appendix E. This proposal will relieve groundwater pressure below the development and this may also help to water the ditch once site runoff is diverted from it.
- 3.12 The drainage strategy layout is included in Appendix E. MicroDrainage calculations are included in Appendix G to demonstrate that the proposed strategy will accommodate storm water in the critical '1 in 100 year plus 40% climate change' events, thereby complying with the NPPF.
- 3.13 A SuDS Management and Maintenance Plan has been prepared see Appendix H of this report. An access route for maintaining the control manhole/catchpit has been incorporated into the design.
- 3.14 Conclusion: this development will not increase the flood risk either on this site or to neighbouring properties and so complies with the 2019 NPPF and current PPG.

- End of Report -

Appendix A

Site Location Maps & Aerial Photo

9

Appendix B

Topographical Survey & Sewer Records

											5	SEW	/ER	RE	COF	RDS	PA	GE 2	2 OF	2				
Node Cover 5201X 17.05 5301X 17.92 5306X 5306X 5401X 18.3 5402X 18.19 5403X 19.14 6401X 18.38 7401X 18.18 7502X 18.18 7602X 15.93 8301X 15.93 8302X 17.04 8401X 18.4	Invert 14.15 13.72 13.3 13.58 16.78 12.92 16.18 12.65 12.32 12.28 12.43 15.15	Size UNK 300 150 150 UNK 300 UNK 150 300 UNK 300 UNK 300 UNK 225	Material UNK CP VC UNK CP UNK VC CP UNK CP UNK CP UNK CP UNK CP UNK VC	Shape CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIR		Node	Cover	Invert	t S	iize	Material	Shope			Node	Cover	Invert	Size	Material	Shape		Node	Co	
		International State Stat	ES / COLOURS Fod Fod Fod Sphon Sewar Fod Sphon Sewar Fod Sphon Sewar Fod Nasura Main Contined Sphon Sewar Contined Sphon Sewar Contined Sphon Bading Over Agreement, Bading Over Agreement, Strade Strade Sevice Water Sector 101 Area Surfae Water Sector 101 Area Surfae Water Sector 101 Area Surfae Water Surfae Water Su	MW AX Alash BKC Borde BKC Brock BKC Brock BKC Brock BKC Brock BKC Brock Constant Con	ATERNALS me Material Connect Sommon) Softwork) is the Connect Sommon Softwork) is the Connect Softwork Connect Information Softwork	lankola (SA) Jankola (F4C) Jankola (F4C) Janpi hola (SA) Jampi hola (F4C) Jampi hola (F4C) Jampi hola (F4C) Jampi hola (F4C) Jahoright Jam (F4C)		Use Washold Use Washold Use Sacking E <	LEGEND - S SM F4C) pr (SM) pr (F4C) ord (SM) hanbor (F4C) k(SM) k(F4C) mbor (F4C) k(SM) mbor (F4C) k(SM) k(F4C) mbor (F4C) k k(SM) k		 Other (s) Other Other Other Other (s) Papathy Fapathy Fapathy Clead Vi Fabric (s) Habb for Habb for Habb for Batacologic 	(SW) States (SW) S	ST Winder ST Winder Under Under State S	nter businent works national works eastwats umn myst lank of R. Rischars S. (S) R. Rischars M. Ablo Sever Mission S. (S) X. Onar CLING SYSTEM X. Onar CLING SYSTEM X. Intelligionaliter material band Water fracts					Draw Title: Date:	n by: 21964	kuma 3_Land a 19/07	ria at Lower Hors 7/2016	sebrid	

2.1.1.1

Appendix C

Environment Agency Flood Maps

EA's Online Flood Map for Planning (Rivers and Seas)

The majority of the site lies in fluvial Flood Zone 1 with a narrow strip along the east boundary in Flood Zone 2

Table 1: Water Levels: Fluvial Undefended (see Levels Node Map for location of Nodes)

	NOD		Modelled Flood Levels in Metres											
	NGR		wodelled Flood Levels in Metres											
			Undefended Annual Exceedar	nce Probability										
Node	Eastings	Northings	1%	0.1%										
Reference														
C0347_MN	557381	110962	16.93	18.36										
C0354_MN	557496	111027	16.15	16.87										
C0355_MN	557562	111031	14.87	15.57										
C0358_MN	557639	111055	16.45	17.12										
C0359_MN	557647	111119	15.48	16.13										
C0368_MN	557832	111148	15.27	15.81										
C0374_MN	557905	111295	16.21	16.71										
C0376_MN	557923	111347	16.38	16.89										
C0383_MN	557990	111255	15.81	16.26										
C0389_MN	558037	111495	17.14	17.62										
C0395_MN	558136	111377	16.96	17.47										
C0398 MN	558152	111444	17.12	17.6										
C0545 MN	557882	111170	16.2	16.7										

Table 2: Water Depth: Fluvial Undefended (See Depths Node Map for location of Nodes)

	N	GR	Modelled Flood Depth in Metres						
			Undefended Annual Exceedance Probability						
Node	Eastings	Northings	1%	0.1%					
Reference		_							
1	557701	111324	0.39	0.98					
2	557706	111350	N/A	0.27					
3	557686	111394	N/A	0.08					
4	557831	111374	N/A	0.29					
5	557816	111400	N/A	<mark>0.12</mark>					
6	557914	111308	2.40	2.91					

EA's Online Surface Water Flood Depth Map in the 'Low Risk Scenario' (1 in 1000 years storm event)

The site is clear of flooding in this extreme storm scenario

EA's Online 'Risk of Flooding from Reservoirs' Map

The site is removed from this source of flood risk

Historic Flood Map Historic Flood Map

EA's Historic Flood Map

This site is removed from the nearest affected area

EA's Groundwater Vulnerability Map

This site overlies a 'Minor Aquifer Intermediate'

EA's Source Protection Zones Map

The site is removed from all Source Protection Zones

Appendix D

Soakaway Tests

Our Ref: YE7694

15th November 2019

For the attention of GTA Civils and Transport,

Ref: Land at Kings Head Public House, Lower Horsebridge, Hailsham, BN27 4DH

We thank you for your request to undertake permeability testing at the above mentioned site and take pleasure in enclosing the results of this work. The investigation was undertaken on the 11th November 2019 in accordance with your instruction to proceed. This letter describes the work undertaken, presents the data obtained and discusses the results of the tests.

Geology

An examination of the available British Geological Survey data of the area for the site has been examined and indicates that the site has superficial drift deposits composed of the River Terrace Deposits (sand and gravel), and bedrock deposits recorded as the Weald Clay Formation (mudstone).

Fieldworks

The programme of this investigation included the excavation of two trial pits. The locations of the soakaway tests were selected by the client.

During this work, the soils encountered were logged in general accordance with BS 5930: 1990, as amended in 2007, and full descriptions are given on the borehole records, which are also appended to this letter.

Soakaway Tests

During the soakaway tests the water failed to achieve a fall from 75% to 25% of the effective depth of the storage volume in TP01 and TP02. The results obtained from the soakaway tests are summarised below:

WS	Soakage Area Dimensions (m)	Depth (m)	Soil Description (Base of TP)	Infiltration Rate (m/sec)	Drainage Characteristics
TP01 test1	1.20 x 0.60	1.50	Soft orange and mottled grey sandy CLAY. Sand is medium to coarse.	N/A	Practically Impermeable
TP02 test1	1.30 x 0.60	1.50	Soft orange and mottled grey sandy CLAY. Sand is medium to coarse.	N/A	Practically Impermeable

Table 1	•	Soakaway	Test	Results
	• •	Joanavay	1051	Nesuns

Discussion

The soils encountered beneath the site were found to be predominantly CLAY. Groundwater was encountered at depths of approximately 1.50mbgl, which was under sub-artesian pressure, rising to 1.20mbgl. Given the data from the test, it is considered that soakaways are not suitable for this site.

References

Building Research Establishment (BRE) Digest 365, Soakaway Design, September 1991.

British Standards Institution (1999) BS5930: Code of practice for site investigations, B.S.I., London.

British Standards Institution (2007), Amendment No 1, BS5930: *Code of practice for site investigations*, B.S.I., London.

We trust that this information is of interest and should you have any other requirements do not hesitate to contact us.

For and on behalf of

Your Environment

Yours Faithfully,

umere

Nick Hammond

Enc.

Appendix A: Site Investigation Plan Appendix B: Trial Pit Logs Appendix C: Soakaway Test Results Appendix D: Photographs

APPENDIX A: Site Investigation Plan

APPENDIX B: Trial Pit Logs

YourG	eotechnica	TP01				Т	rial Pit Log	TrialPit TP0 ² Sheet 1	No 1 of 1
Project	Kinas Hea	d PH.		Proj	ect No.		Co-ords: -	Date	
Name:				YE7	694		Level: Dimensions 1.20	11/11/2019 Scale	
Locatior	n: Hailsham,	BN27 40	DH.				(m): Death	1:25	4
Client:	GTA Civils	and Trai	nsport.	1			1.50	NH	u
Water Strike	Samp Depth	oles & In Sit	u Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
				0.30			Loose light brown SAND. Sand is fine to medium. Soft orange sandy CLAY. Sand is medium to coarse medium to coarse. End of Pit at 1.50m	Se.	
									5 —
Remark Stability	_{s:} Ingress o :	f water.		-			·	AG	I S

YourGe	otechnical	TP02				TrialPit N TP02	No 2			
						••		Sheet 1 o	of 1	
Project	Kings Hea	d PH		Proj	ect No.		Co-ords: -	Date		
Name:	Tango Tida			YE7	694		Level:	11/11/20	11/11/2019	
Location	: Hailsham,	BN27 40	DH.				Dimensions 1.30 (m):	Scale 1:25		
Client:	GTA Civils	and Tra	nsport.		_		Depth 0 1.50	Loggeo NH	ł	
Water Strike	Samp	les & In Sit	u Testing	Depth (m)	Level (m)	Legend				
				0.45			Loose light brown SAND. Sand is fine to medium Soft orange and mottled grey sandy CLAY. Sand medium to coarse. End of Pit at 1.50m	is	2	
Stability:	ngress of	i walei.						AG	I S	

APPENDIX B: Soakaway Test Results

Your Environment

Soakaway Test

	Trial Pit No:	TP1	Test No:	1	Date:	11/11/2019
	Length (m):	1.200		Datum Height:	0.00	m agl
	Width (m):	0.60		Granular infill:	None	()
	Depth (m):	1.50		Porosity of Infill:	1	(assumed)
		Elapsed time	Water Depth	Elapsed time	Water Depth	
		(minutes)	(m below datum)	(minutes)	(m below datum)	
		0	1.500	30	1.190	
		ן ר	1.480			
		2	1.400			
		5 Д	1 420			
		5	1 400			
		6	1.380			
		7	1.360			
		8	1.340			
		9	1.330			
		10	1.320			
		15	1.270			
		20	1.240			
		25	1.220			
	0.00					
	0.00					
	0.20 -					
	0.40 +					
-	0.60 -					
다. 단	0.80					
Dep	0.00					
	1.00 +					
	1.20 +					
	1.40 -					
		-				
	1.60 +0	5 1	0 15	20	25 30	35
			Elapsed t	time (minutes)		
Sta	rt water depth f	for analysis (mbgl)	1.50			
75%	6 effective dept	h (mbgl):	1.50	EI	apsed time (mins):	#N/A
50%	6 effective dept	h (mbgl):	1.50			
25%	6 effective dept	h (mbgl):	1.50	EI	apsed time (mins):	#N/A
Bas	e of soakage zoi	ne (mbgl):	1.50			
Vol	ume outflow be	tween 75% and 25	% effective depth (m³):		
Me	an surface area	of outflow (m ²):		,	0.72	
(sic	le area at 50% e	ffective depth + b	ase area)		5E	
Tin	ne for outflow be	etween 75% and 2	5% effective depth	(mins):		
				Test incomple	te as 25% effective	e depth not
	Soil in	filtration rate	(m/s):	achieved. Una	able to reliably det	ermine soil
	marke			<u> </u>	infiltration rate.	
ке	narks	Results processed	following BRE 365	(2007).		
Cli	ent:	GTA Civils and	Transport			TP1
C:+	e:	Land at Kings I	Head PH			

Your Environment

Soakaway Test

	Trial Pit No:	TP2	Test No:	1	Date:	11/11/2019
	Length (m):	1.300		Datum Height:	0.00	m agl
	Width (m):	0.60		Granular infill:	None	
	Depth (m):	1.50		Porosity of infill:	1	(assumed)
		Elapsed time	Water Depth	Elapsed time	Water Depth	
		(minutes)	(m below datum)	(minutes)	(m below datum)	
		0	1.500	30	1.180	
		1	1.470			
		2	1.450			
		3	1.430			
		5	1.380			
		6	1.370			
		7	1.360			
		8	1.340			
		9	1.350			
		10	1.330			
		15	1.280			
		20	1.240			
		25	1.200			
	0.00					
	0.20 +					
	0.40 +					
Ê	0.60 +					
pth (0.80 +					
Del	1.00					
	1.00 T					
	1.20 +					
	1.40	<u>₽</u> ₽₽₽₽₽				
	1.60 +0	5 1	0 15	20	25 30	35
			Elapsed t	time (minutes)		
Sta	rt water denth f	for analysis (mbal)	1 50]
75%	6 effective dept	h (mbgl):	1.50	EI	apsed time (mins):	#N/A
50%	% effective dept	h (mbgl):	1.50			
25%	, 6 effective deptl	h (mbgl):	1.50	EI	apsed time (mins):	#N/A
Bas	se of soakage zo	ne (mbgl):	1.50			
Vol	lume outflow be	tween 75% and 25	% effective depth (m³):		
Me	an surface area	of outflow (m ²):			0.78	
(SIC	ue area at 50% e	otwoon 75% and 2	base area)	(mins).		
			570 en ective depth		to as JEW offerting	dopth pot
	Soil in	filtration rate	(m/s)	achieved Una	ie as 20% effective ble to reliably det	ermine soil
	501111		(11/3).		infiltration rate	
Re	marks	Results processed	following BRF 365	(2007).		
				、 <i>)</i> ,		
CI	iont	GTA Civils and	Transport			
Cit		l and at Kingel	Head PH			TP2
51		Lana at Kings I				

Appendix E

Proposed Scheme Drawings

All drainage shall be constructed and commissioned in accordance with BS EN 295 & BS EN752, Building Regulations Doc. H and any particular requirements of the Building Control Officer.

Drainage pipelines shall be in PVC-u below ground as Marley or similar

This drawing shall be read in conjunction with all other relevant drainage drawings, architectural drawings and structural drawings. For manhole details, gully details, bedding etc, refer to gta detail sheets.

All foul water drain runs shall have a fall of 1:40 or steeper, unless

All cement used for concrete drainage installations shall be sulphate

The use of short radius or 90° bends for changes in direction is not permitted, only long or medium radius 45° bends shall be used. All

All drainage works shall commence from the upstream end first unless agreed otherwise. Outfall level to be checked by contractor prior to any GENERAL NOTES

1. The location, size, depth and identification of existing services that may be shown or referred to on this drawing have been assessed from non intrusive observations, record drawings or the like. The contractor shall safely carry out intrusive investigations, trial holes or soundings prior to commencing work to satisfy himself that it is safe to proceed and that the assessments are

accurate. any discrepancies shall be notified to gta prior to works commencing. 2. Tender or billing drawings shall not be used for construction or the ordering of materials.

3. Do not scale. All dimensions and levels to be site confirmed.

4. This drawing shall be read in conjunction with all relevant architects, consultants drawings and specifications, together with H&S plan requirements 5. Copyright : This drawing must not be copied, amended nor reproduced without the prior

written agreement of gta.

6. All drawings specifications and recommendations made by gta are subject to Local Authority and other relevant Statutory Authorities approval. Any works or services made abortive due to the client proceeding prior to these approvals is considered wholly at the Clients risk. gta hold no responsibility for resulting abortive works or costs.

		P04 Ur	pdated to	LLFA comr	ments		30.04.20	PH	M
		P03 Ta P02 Up	ank remov pdated for	ed planning			25.11.19 19.11.19	TPL TPL	M
		P01 IN	ITTIAL ISS	UE	onto		31.10.19	TPL	M
		Statu	S	P	RELIMI	NARY	Date	Dall	
		Client	t		DECIM	IUS			
<u>KEY</u>		Archi	tect	В	DB DE	SIGN			
	PERMEABLE SURFACING WITH CLEAN STONE SUB-BASE	Proje L	AND	AT LC	DWER	HOR	SEBRI	DG	E
	Existing Foul water drain			Г	TAILSE				
	Proposed Private foul water drain	Title							
	Proposed Private surface water drain		D	RAIN	IAGE S	STRA	ГEGY		
	Surface Water Access Chamber								
	Surface Water Inspection Chamber	Date	00	T 2010	Sc	cale @ A0	1.200		
	Foul Water Access Chamber	Clients	Ref.	1 2019	Pr	oiect Ref.	1.200		
	Surface Water Inspection Chamber					- y	10273		
	Permavoid Distribution tank				jta	Civils Transp	f oort		
	SVP		÷ ,	Glouce Burge	ester House, ss Hill, West	66a Chur Sussex, RI	ch Walk, H15 9AS		
	Rodding point		i el	1.01444 8/	1444 VVeb:	www.gtac	IVIIS.CO.UK		
	Drennend land drain for groundwater relief								

Drawing Number 10273/1101

P04

	Recreation ground		—— Land within applicant's control ————		Proposed dwelling FFL 18.450	Proposed development Permeable pavement FRL 18.280 FFL 18.450	
1	18m 17m 16m	Existing ground profile					A271
Datum: 15.000M AOD							
EXISTING CHAINAGE (m)	- 0.000 - 1.593 - 2.991 - 2.991 - 6.689 - 8.645 - 8.645 - 8.645 - 8.645 - 9.655 - 9.6555 - 9.6	- 12.551 - - 16.515 - 16.515 - 23.146 - 24.421 - 28.526 -	- 33.799 - - 38.344 - - 43.316 - 49.010 - - 52.717 -	- 60.064 - - 62.523 - - 69.760 - - 74.594 -	81.445 81.445 8.599 88.599 92.355 96.477 96.477 96.477 9	- 99.551 - 104.432 - 106.999 - 111.771 - 113.058 - 113.058 - 113.058 - 118.779 - 120.317 -	- 127.747 - 127.747 - 131.230 - 131.230 - 131.230 - 131.251 - 131.578 - 131.578 - 131.578 - 141.017 - 141.017 - 141.017 - 141.017 - 141.219
EXISTING LEVELS (m)	- 16.807 - 16.686 - 15.901 - 15.901 -	- 16.249 - - 16.567 - - 17.233 - - 17.239 - - 17.399 -	- 17.593 - - 17.701 - - 17.785 - - 17.828 - - 17.828 - - 17.876 -	- 17.968 - - 17.989 - - 18.056 - - 18.151 -	- 18.294 - 18.350 - 18.319 - 18.319 - 18.322 -	- 18.337 - 18.368 - 18.368 - 18.368 - 18.368 - 18.368 - 18.368 - 18.364 - 18.366 - 1	- 17.799 - 18.243 - 17.799 - 17.799 - 17.799 - 17.299 - 1

SECTION A-A Horiz. 1:500; Vert. 1:100

		The Kings Head land —	Proposed development —	
	A271	Existing ground profile	Proposed dwelling FFL 18.450 FRL 18.280 Boundary ditch	
	17m			
	16m			
Datum: 15.000M AOD				
EXISTING CHAINAGE (m)	0.000 4.955 8.2888 1.1 1.1 1.1 1.1 1.1 1.1 1.1	- 35.496 - 35.496 - 46.592 - 50.603 - 54.336 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.356 - 54.5566 - 54.5566 - 54.5566 - 54.5566 - 54.5566 - 54.5566 - 54.556 - 54.556 - 54.556 - 54.556 - 54.5	59.35 59.25 59.25 <td< th=""><th>, 027.021</th></td<>	, 027.021
EXISTING LEVELS (m)	- 18.065 - 18.040 - 18.121 - 18.121 - 18.121	- 18.078 - - 18.235 - - 18.235 - - 18.231 -	7 7 7 7 7 8 3334 7 7 8 8 1 13334 13 8 8 1 1 13334 13 8 1 1 1 1334 13 13 13 13 1334 13 13 13 14 1334 13 13 13 14 14 13 13 13 13 15 13 13 13 13 16 13 13 13 13 17 13 13 13 13 17 13 13 13 13 17 13 13 13 14 17 13 13 13 14 13 13 14 1 14 13 13 14 1 14 13 13 14 1 14 13 13 14 1 14 13 14 1 14 14 14 14 14 14 14 15 14 14 14 14 <	- 7/1. ~

SECTION B-B

Horiz. 1:500; Vert. 1:100

GENERAL NOTES

1. The location, size, depth and identification of existing services that may be shown or referred to on this drawing have been assessed from non intrusive observations, record drawings or the like. The contractor shall safely carry out intrusive investigations, trial holes or soundings prior to commencing work to satisfy himself that it is safe to proceed and that the assessments are accurate. any discrepancies shall be notified to gta prior to works commencing works commencing.

2. Tender or billing drawings shall not be used for construction or the ordering of materials.

3. Do not scale. All dimensions and levels to be site confirmed.

4. This drawing shall be read in conjunction with all relevant architects, consultants drawings and specifications, together with H&S plan requirements.

Copyright : This drawing must not be copied, amended nor reproduced without the prior written agreement of gta.

6. All drawings specifications and recommendations made by gta are subject to Local Authority and other relevant Statutory Authorities approval. Any works or services made abortive due to the client proceeding prior to these approvals is considered wholly at the Clients risk. gta hold no responsibility for resulting abortive works or costs.

Appendix F

East Sussex Highways Correspondence

From: Roger Archer-Reeves
Sent: 07 April 2020 10:29
To: Phil Hurst
Cc: Sonia Holman
Subject: : RE: Case 447829 - Request to discharge into Highway Drainage - Lower Horsebridge,
Hailsham

Phil

Further to our two conversations regarding the above development I have spoken with colleagues and consider the most pragmatic way forward as below: -

Connecting into the highway system is the best option available.

I appreciate some investigation has been done but I would want to see some proof of the integrity of the system, ideally by CCTV.

The agreement for a connection to be subject to the following: -

- Discharge rate into the highway system be as low as possible, we discussed 2 litres/ second;
- A CCTV survey showing the condition of the highway drainage system;
- The developer pays for any improvements or rehabilitation required for the system from point of connection to outfall into the Cuckmere

I believe there may be a need for some attenuation built into the system prior to the point of connection.

Naturally happy to discuss further.

Regards

Roger

This message is intended for the use of the addressee only and may contain confidential or privileged information. If you have received it in error please notify the sender and destroy it. You may not use it or copy it to anyone else.

E-mail is not a secure communications medium. Please be aware of this when replying. All communications sent to or from the County Council may be subject to recording and/or monitoring in accordance with relevant legislation.

Although East Sussex County Council has taken steps to ensure that this e-mail and any attachments are virus free, we can take no responsibility if a virus is actually present and you are advised to ensure that the appropriate checks are made.

You can visit our website at https://www.eastsussex.gov.uk

Appendix G

Micro Drainage Calculation Sheets

GTA Civils Ltd		Page 1
Gloucester House	Lower Horsebridge 10273	
66a Church Walk	Greenfield runoff	
Burgess Hill, BN43 6LB		Mirro
Date 25/11/2019	Designed by MCR	Dcainago
File	Checked by	Diamage
XP Solutions	Source Control 2019.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years)	100	Soil	0.450
Area (ha)	0.146	Urban	0.000
SAAR (mm)	800	Region Number	Region 7

Results 1/s

QBAR Rural 0.7 QBAR Urban 0.7 Q100 years 2.4

Q1 year 0.6 Q30 years 1.7 Q100 years 2.4

GTA Civils Ltd		Page 1
66a Church Walk	Lower Horsebridge	
Burgess Hill	SW Network	Contraction of the second
West Sussex RH15 9AS		Mirco
Date 30/04/2020	Designed by PH	Drainago
File 10273_1in100+40% storm Por. pav jan2020.MDX	Checked by MR	Diamage
Micro Drainage	Network 2018.1	·
<u>Storm sewer de</u> <u>D</u> e	SIGN by the Modified Rational Method esign Criteria for Storm	
Pipe Siz	zes STANDARD Manhole Sizes STANDARD	
FSR R. Return Period (years) 100 M5-60 (mm) 20.000 Ratio R 0.392 Maximum Rainfall (mm/hr) 50 Add Maximum Time of Concentration (mins) 30 Mi	ainfall Model - England and Wales Foul Sewage (1/s/ha) 0.000 Maximum Backdrop Height (Volumetric Runoff Coeff. 0.750 Min Design Depth for Optimisation (PIMP (%) 100 Min Vel for Auto Design only (m/ Flow / Climate Change (%) 0 Min Slope for Optimisation (1: nimum Backdrop Height (m) 0.200 Designed with Level Soffits	(m) 1.500 (m) 1.200 (s) 1.00 X) 500
Netw	ork Design Table for Storm	
« -	Indicates pipe capacity < flow	
PN Length Fall Slope I.Ar (m) (m) (1:X) (ha	ea T.E. Base k HYD DIA Section Type Auto) (mins) Flow (l/s) (mm) SECT (mm) Design	
1.000 9.509 0.063 150.9 0.1 1.001 4.071 0.030 135.7 0.0	70 5.00 0.0 0.600 o 150 Pipe/Conduit 0 00 0.00 0.0 0.600 o 150 Pipe/Conduit 0	
	Network Results Table	
PN Rain T.C. US/IL (mm/hr) (mins) (m)	Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)	
1.000 50.00 5.19 17.600 1.001 50.00 5.27 17 530	0 0.170 0.0 0.0 0.0 0.82 14.4« 23.0 0 0.170 0.0 0.0 0.0 0.86 15 2« 23.0	
	@1002_2010_Ippoyuzo	
	STAR TOTO TUUDAATE	

GTA Civils Ltd		Page 2
66a Church Walk	Lower Horsebridge	
Burgess Hill	SW Network	Contraction of the second
West Sussex RH15 9AS		Mirco
Date 25/11/2019	Designed by TL	Dcainago
File 10273_1in100+40% storm Por. pav jan2020.MDX	Checked by	Diamaye
Micro Drainage	Network 2018.1	

<u>Network Design Table for Storm</u>

PN	Length	Fall	Slope	I.Area	T.E.	Ba	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
1.002	14.707	0.100	147.1	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	<u> </u>
1.003	34.166	0.975	35.0	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	- Ā
1.004	33.971	0.950	35.8	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	Ä
1.005	4.049	0.050	81.0	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	ē

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	ΣΕ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow	(l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(l/s)
1.002	50.00	5.57	17.500	0.170		0.0	0.0	0.0	0.83	14.6«	23.0
1.003	50.00	5.90	17.400	0.170		0.0	0.0	0.0	1.71	30.1	23.0
1.004	50.00	6.24	16.425	0.170		0.0	0.0	0.0	1.69	29.8	23.0
1.005	50.00	6.30	15.450	0.170		0.0	0.0	0.0	1.12	19.8«	23.0

Free Flowing Outfall Details for Storm

Out	tfall	Outfall	c.	Level	I.	Level		Min	D,L	Ŵ	I
Pipe	Number	Name		(m)		(m)	Ι.	Level (m)	(mm)	(m	m)
	1.005			16.300		15.400	-	15.400	C	1	0

GTA Civils Ltd		Page 3
66a Church Walk	Lower Horsebridge	
Burgess Hill	SW Network	Contraction of the second s
West Sussex RH15 9AS		Micco
Date 25/11/2019	Designed by TL	Desinarro
File 10273_1in100+40% storm Por. pav jan2020.MDX	Checked by	Digitige
Micro Drainage	Network 2018.1	
O <u>Hydro-Brake®</u> Optimum Unit Reference MD-SHE-006 Design Head (m) Design Flow (1/s) Flush-Flo™	nline Controls for Storm Manhole: 4, DS/PN: 1.003, Volume (m³): 6.4 9-2000-0850-2000 Sump Available 9-2000-0850-2000 Diameter (mm) 0.850 Diameter (mm) 2.0 Invert Level (m) 17.400 Calculated Minimum Outlet Pipe Diameter (mm) 100	
Objective Minimise Application	upstream storage Suggested Manhole Diameter (mm) 1200 Surface	
Control Points Head Design Point (Calculated) 0.6	(m) Flow (1/s) Control Points Head (m) Flow (1/s) 850 2.0 Kick-Flo® 0.535 1.6	
Flush-Flo™ 0.2	257 2.0 Mean Flow over Head Range - 1.8	
The hydrological calculations have been based on the Head/Disc control device other than a Hydro-Brake Optimum® be utilised t	charge relationship for the Hydro-Brake® Optimum as specified. Shou then these storage routing calculations will be invalidated	ld another type of
Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth	(m) Flow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s) Depth (m)	Flow (l/s)

0 100	1 7	0 600	1 7	1 600	2 7	2 600	3 3	5 000	1 5	7 500	5 5
0.200	2.0	0.800	1.9	1.800	2.8	3.000	3.6	5.500	4.7	8.000	5.7
0.300	2.0	1.000	2.2	2.000	3.0	3.500	3.8	6.000	4.9	8.500	5.8
0.400	1.9	1.200	2.3	2.200	3.1	4.000	4.1	6.500	5.1	9.000	6.0
0.500	1.7	1.400	2.5	2.400	3.2	4.500	4.3	7.000	5.3	9.500	6.1

GTA Civils Ltd		Page 4
66a Church Walk	Lower Horsebridge	C
Burgess Hill	SW Network	The second second
West Sussex RH15 9AS		Micco
Date 25/11/2019	Designed by TL	Dcainago
File 10273_1in100+40% storm Por. pav jan2020.MDX	Checked by	Drainage
Micro Drainage	Network 2018.1	<u>.</u>

Storage Structures for Storm

Porous Car Park Manhole: 2, DS/PN: 1.000

Infiltration Coefficient Base (m/hr)	0.00000	Poros	ity	0.30	Slope (1:X)	0.0
Membrane Percolation (mm/hr)	1000	Invert Level	(m)	17.600	Depression Storage (mm)	5
Max Percolation (1/s)	125.6	Width	(m)	10.0	Evaporation (mm/day)	3
Safety Factor	2.0	Length	(m)	45.2	Membrane Depth (mm)	0

GTA Civils Ltd													Pag	e 5
66a Church Walk					Lc	ower Ho	rsebridge	Э						
Burgess Hill	SW Network						a contraction							
West Sussex RH15	sex RH15 9AS							Mirco						
Date 25/11/2019	te 25/11/2019 Designed by TL						Dcainago							
File 10273_1in100+	File 10273_1in100+40% storm Por. pav jan2020.MDX Checked by							Diamage						
Micro Drainage					Ne	etwork	2018.1							
		<u>9</u>	ummary	of Critic	al Resu	lts by	Maximum	Level	(Rank	1) for (<u>Storm</u>			
	Areal Re Hc Hot St	duction F t Start (art Level	actor 1.0 mins) (mm)	00 Manhol 0 Foul 0 Addition	e Headlos Sewage p al Flow -	Simulati s Coeff er hecta % of To	<u>on Criteria</u> (Global) 0 are (l/s) 0 otal Flow 0	<u>.</u> .500 .000 .000 Flo [.]	MADD w per P	Factor * In erson per	10m³/ha St let Coeffie Day (l/per	corage ecient c/day)	2.000 0.800 0.000	
		Number o Numbei	of Input H c of Onlin	Hydrographs ne Controls	0 Numbe 1 Number	er of Of of Stor	fline Contr age Structu	rols 0 Nu res 1 Nu	umber of umber of	f Time/Are f Real Tin	ea Diagrams ne Controls	0 0		
			FEH Ra Margin f	Rainfall Mod infall Vers: Site Locat: For Flood Ri An	<u>Synt</u> del ion ion GB 55 sk Warnin alysis Ti	hetic Ra 7744 112 ng (mm) mestep	ainfall Det. 1522 TQ 5774 300.0 DTS S Fine DVD S	ails FEH 2013 44 11522 Status OF Status C	Data Cv (Suu Cv (Wi: CF Inert DN	Type Poi mmer) 0.7 nter) 0.8 tia Status	nt 50 40 s ON			
		Return	Pr Duration(s Period(s) Climate Ch	rofile(s) s) (mins) 3() (years) hange (%)), 60, 120	0, 180,	240, 360, 4	180, 600,	720, 9	Summer 960, 1440,	and Winter 2160, 2880 100 40	r 0 0 0		
						Water	Surcharged	Flooded				Pine		
	US/MH				US/CL	Level	Depth	Volume	Flow /	Maximum	Discharge	Flow		
PN	Name		Event		(m)	(m)	(m)	(m³)	Cap.	Vol (m³)	Vol (m³)	(1/s)	Status	
1.000	2 3	60 minute	100 year	Winter I+40	18.300	18.254	0.504	0.000	0.25	89.410	79.802	3.2	FLOOD RIS	K
1.001	2 3	60 minute	100 year	Winter I+40	8 18.300	18.247	0.567	0.000	0.28	0.952	79.135	3.0	FLOOD RIS	K
1.002	23	60 minute	100 year	Winter I+40	18.300	18.244	0.594	0.000	0.22	0.886	78.487	2.9	FLOOD RIS	SK .
1.003	43 49	60 minute 60 minute	100 year	Winter 1+40 Winter T+40	18 18.250	18.235 16.451	U.685 -0 124	0.000	0.07	6.280 0 027	166 812	2.0	FLOOD RIS)K V
1.004	4 9	60 minute	100 year	Winter I+40	16.300	15.487	-0.113	0.000	0.14	0.040	166.810	2.0	C	DK
					©1	982-20	18 Innovy	ze						

Appendix H

SuDS Maintenance Plan

Maintenance Responsibilities

To ensure ongoing compliance with the requirements of the maintenance schedule, an Estate Management Company will be set up by the Applicant (site owner) to administer the site wide infrastructure including all the drainage items listed in this Plan.

It is the overarching responsibility of the **site owner** to ensure the Drainage Infrastructure is maintained in accordance with this Maintenance Plan.

Contamination or Dilution of Spillage

The Environment Agency would prefer all spillages on any highway to be contained to prevent any downstream contamination. However, this cannot always be achieved, depending on the nature of the spillage. In all circumstances involving the spillage of substances on the highway it is important that the Environment Agency are notified as soon as possible so that they can provide advice and take appropriate action.

Prompt action following a spillage can prevent or reduce its effects, whilst inappropriate action may cause or worsen the pollution effects. In the design of the drainage on this site, a number of measures have been put in place to prevent any pollution entering the groundwater such as Green roofs and permeable paving. The permeable paving sub-base is lined with a geotextile fabric.

In the event of a spillage on site it is the responsibility of the Management Company's staff to clear up any spillage before it enters the drainage system. The primary method of dealing with any spillage of Hydrocarbons should be to use sand to soak up the leak and prevent any Hydrocarbons entering the drainage system. Once sand has been contaminated it should not be washed into the drainage system but disposed of by a Licensed Contractor.

Environment Agency – Emergency Contact Number

In the event of a spillage the Environment Agency should be contacted to notify the event and seek advice. The Environment Agency's Incident Hotline is **0800 80 70 60** (Freephone 24hrs).

Permeable Paved Areas

Regular inspection and maintenance are important for the effective operation of porous paved areas.

The surfaces should be kept clear of debris and/or cleaned as necessary.

Damaged surfaces should be repaired as soon as possible. Please contact the contractor who installed the surfacing.

Areas subject to snow, ice and frost can be treated using Rock Salt; however, this may be harmful to plants and can damage surrounding metal or concrete surfaces. Excessive snow should be shovelled away using a plastic snow shovel, taking care not to damage the surfacing. Do not use a wire brush ice remover.

Permeable paving maintenance and monitoring requirements are described in the following table:

Schedule	Action	Frequency
Regular Maintenance	Brushing and vacuuming.	Three times per year at end of
		winter, mid-summer,
		after autumn leaf fall, or as
		required based on specific
		observations
Occasional Maintenance	Stabilise and mow	As required
	contributing and adjacent	
	areas	
Remedial Actions	Remedial work to any	As required
	depressions, rutting and	
	cracked or broken blocks or	
	deformations in the	
	permeable paving (if	
	applicable) considered	
	detrimental to the structural	
	performance.	

	Rehabilitation of surface and	As required
Monitoring	Initial Inspection	Monthly for 3 months after installation.
	Inspect for evidence of poor operation and / or weed growth.	3 monthly & 48hrs. after large storms.
	Inspect silt accumulation rates and establish appropriate brushing techniques	Annually.

Drains, Manholes, Gullies, Silt Catchpits

Regular inspection/maintenance is required to ensure the effective long-term operation of private drains, manholes, gullies & silt pits.

Check hydrobrake orifice is clear and retention tank door is closed. Check function of retention tank door and oil if necessary.

Operation and maintenance requirements for drains, gullies and silt pits are described in the following table:

Action	Frequency
Inspect and identify any areas that are not operating correctly. If required, take remedial action.	6 Monthly intervals
Debris removal from gullies & silt pits, channel drains (where may cause risks to performance).	Weekly
Lift and inspect receiving manholes to check for any blockages. Particular attention should be given to the control manhole containing the flow	Six-monthly
	Action Inspect and identify any areas that are not operating correctly. If required, take remedial action. Debris removal from gullies & silt pits, channel drains (where may cause risks to performance). Lift and inspect receiving manholes to check for any blockages. Particular attention should be given to the control manhole containing the flow control device.

Remedial Actions	Repair any damaged gully gratings or manhole covers.	As required
	Replace / fix any loose channel drain covers.	As required
Monitoring	Carry out full CCTV survey to confirm ongoing integrity of all drains. Inspect all gullies and silt pits & drainage channels during the survey.	10-yearly intervals

Inspection of manholes and removal of silt from silt catchpits should be undertaken by a specialist contractor.

