

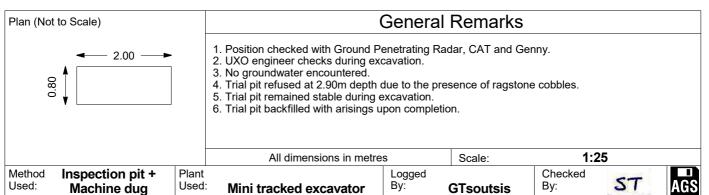
APPENDIX H EXPLORATORY HOLE RECORDS

GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 Pr[Version: v8 07 | Graph I - DCP - 2 - CBR VALUE VS DEPTH - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10 01. | 10/02/21 - 16:27 | GT1 |

GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 Pr[Version: v8 07 | Graph I - DCP - 2 - CBR VALUE VS DEPTH - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10 01. | 10/02/21 - 16:27 | GT1 |

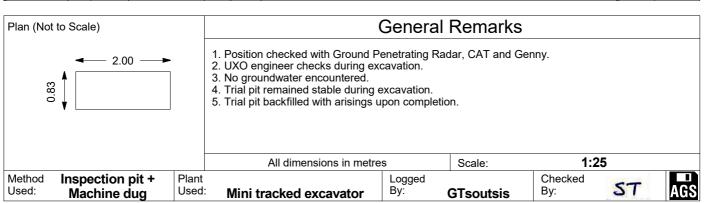
GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 Pr[Version: v8 07 | Graph I - DCP - 2 - CBR VALUE VS DEPTH - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10 01. | 10/02/21 - 16:27 | GT1 |

GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 Pr[Version: v8 07 | Graph I - DCP - 2 - CBR VALUE VS DEPTH - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10 01. | 10/02/21 - 16:27 | GT1 |

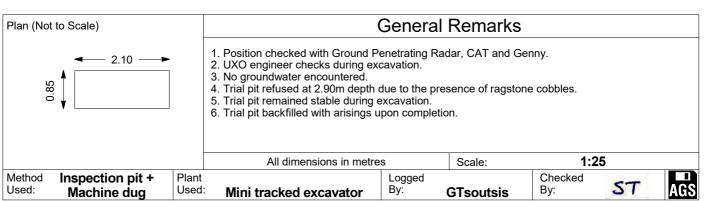

GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 Pr[Version: v8 07 | Graph I - DCP - 2 - CBR VALUE VS DEPTH - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10 01. | 10/02/21 - 16:27 | GT1 |

GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 Pr[Version: v8 07 | Graph I - DCP - 2 - CBR VALUE VS DEPTH - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10 01. | 10/02/21 - 16:27 | GT1 |

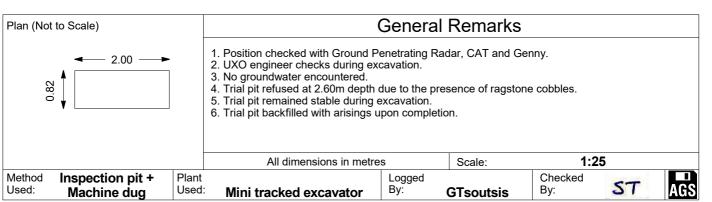
Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The	East Malling Trust			٦	ГР1
Contract Ref:	Start:	11.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	11.12.20		19.03	E:570867.7 N:157820.8		1	of	1


	JLL	UT	Eliu.	11.1	2.20	13.03		01 1
Samp	oles a	and In-si	itu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No		Results	Š	Вас	·	ness)	Legend
0.00-0.30	1	ES				Grass over dark brown sandy CLAY with rootlets present. Sand is fine to medium. (TOPSOIL)	(0.30)	.\ b .\ b .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
0.30		PID	0.2ppm			Light brown, orange slighlty slightly sandy gravelly CLAY. Gravel is fine to medium subrounded to subangular flints. Sand is fine. (HYTHE FORMATION)	-	
0.50-0.50 - 0.50 - 0.80-1.10	2	ES PID B	0.1ppm				-	
-						from 0.80m becoming gravelly sandy CLAY. Gravel is subangular cobble size of flint.	- - (1.60) -	
1.40-1.70	2	В				from 1.30m becoming gravelly very sandy CLAY. Gravel is fine to coarse subrounded to subangular flints. Sand is fine to medium.	1.90	
2.00-2.40	3	D				Light brown mottled slightly sandy CLAY. Sand is fine. (HYTHE FORMATION)	- - - (1.00)	
2.70-2.90	4	D				from 2.40m to 2.60m ragstone band.	2.90	
					×××××	Trial pit terminated at 2.90m		
_							-	
-							- -	
-							-	
-							- - -	
							_ - -	

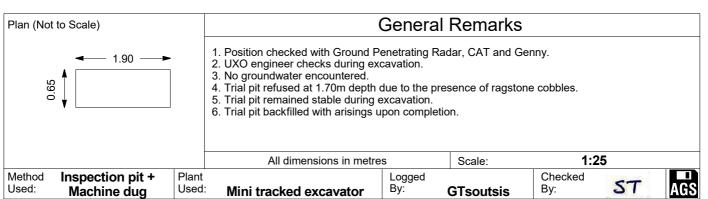
Contract:			Client:	Trial Pit	:			
Ditton Edge, Ea	st Malling		The East Malling Trust				-	ГР2
Contract Ref:	Start: 11.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End: 11.12.20		19.67	E:570805.0 N:157802.5		1	of	1


	JLL	JT	Eliu.	11.1	2.20	13.07		01 1
Samp	oles a	ınd In-si	tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	×	Вас		ness)	Legend
0.00-0.35	1	ES				Grass over dark brown clayey fine to medium SAND with rootlets present. (TOPSOIL)	(0.35)	17 - 31 - 17 - 17 - 17 - 17 - 17 - 17 -
- 0.35		PID	0.1ppm			Loose to medium dense light brown, orange gravelly clayey SAND. Gravel is medium to coarse subrounded to subangular flints. Sand is	0.35	
0.50-0.50 0.50	2	ES PID	0.1ppm			fine to medium. (HYTHE FORMATION)	- -	
0.80-1.10	1	В					- - 	
1.30-1.60	2	D				from 1.10m becoming light brown, greenish sandy CLAY occasional subangular cobble size flints.	(1.45)	
- - -						Light brown, greenish very clayey fine to medium SAND. (HYTHE FORMATION)	1.80	
2.20-2.50	3	D					-(1.20)	
2.80-3.00	4	D				from 2.70m becoming mottled very sandy CLAY. Sand is fine.	3.00	
-						Trial pit completed at 3.00m	-	
-							- -	
-							-	
_							-	
-								
-							- -	
-							-	

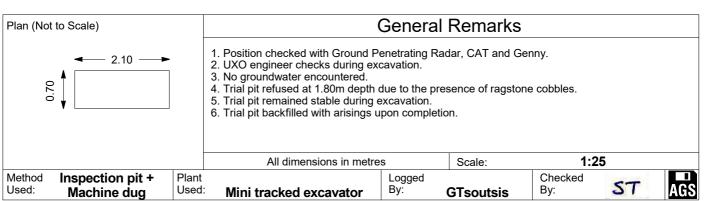
Contract:				Client:		Trial Pit:				
Ditton Edge, Ea	ast M	alling		The	East Malling Trust			٦	TΡ	3
Contract Ref:	Start:	11.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	11.12.20		18.85	E:570860.7 N:157768.4		1	of	1	


	JZZ		End:	11.1	2.20	10.05 E:3/0000./ N:13//00.4		ot I
	1		tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Graphic
Depth	No	Туре	Results	>	m m		ness)	Legend
0.00-0.30	1	ES				Grass over dark brown very sandy CLAY with rootlets present. Sand is fine. (TOPSOIL)	(0.30)	70.70.7 N.77.7 N.77.7
0.30		PID	0.2ppm			Light brown, orange slightly gravelly clayey fine to medium SAND. Gravel is fine to coarse subrounded to subangular flints. (HYTHE FORMATION)	-	
0.50-0.50 - 0.50 -	2	ES PID	0.1ppm				-	
1.10-1.40	2	В				from 1.00m becoming very gravelly clayey fine to medium SAND. Gravel is fine to coarse subrounded to subangular flints.	-(1.80)	
-						ragstone bands at 1.90m.	2.10	- 0 0 - 0
2.20-2.60	3	В				Light brown, orange gravelly fine SAND. Gravel is subangular cobble size of ragstone fragments. (HYTHE FORMATION)	-(0.80)	
	4	D					2.90	
2.90-2.90	4	J				Trial pit terminated at 2.90m.	-	

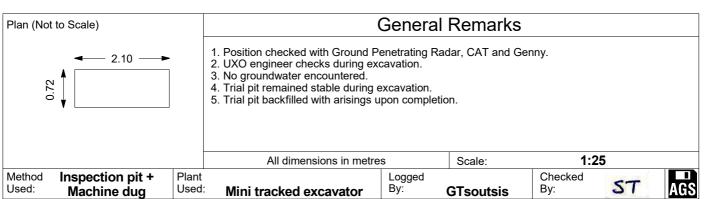
Contract:				Client:	Client:				
Ditton Edge, Ea	ast M	alling		The East Malling Trust				-	TP4
Contract Ref:	Start:	11.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	11.12.20		19.46	E:570775.7 N:157691.6		1	of	1


	JLL		Eliu.	11.1	2.20	13.40 E.370773.7 N.137031.0		01 1
Samı	ples a	and In-si	itu Tests	ter	Kfill	5		Material
Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
0.00-0.30	1	ES				Grass over dark brown slightly gravelly slightly sandy CLAY with rootlets present. Gravel is fine subrounded to subangular flints and fine brick fragments. Sand is fine to medium. (TOPSOIL)	(0.30)	\(\frac{1}{2}\), \(\frac{1}\), \(\frac{1}\), \(\frac{1}{2}\), \(\frac{1}{2
0.30		PID	0.3ppm			Light brown, orange very sandy CLAY occasional subangular cobble size ragstone fragments. Sand is fine. (HYTHE FORMATION)	-	0.00
0.80-1.10 - -	1	В				from 0.80m becoming slightly gravelly clayey SAND. Gravel is fine to coarse subangular to angular ragstone fragments.	(1.10)	0 - 0 (
1.40-1.70	2	В				Light brown clayey fine to medium SAND with numerous subangular cobble size ragstone fragments. (HYTHE FORMATION)	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 2.10-2.50 -	3	В				from 2.20m becoming gravelly fine to medium SAND. Gravel is subangular cobble size ragstone fragments.	(1.20)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-					*****	Trial pit terminated at 2.60m.	-	· (). ·
- - -							- - -	
· - -							-	
- - -							-	
- - -							-	
-							-	

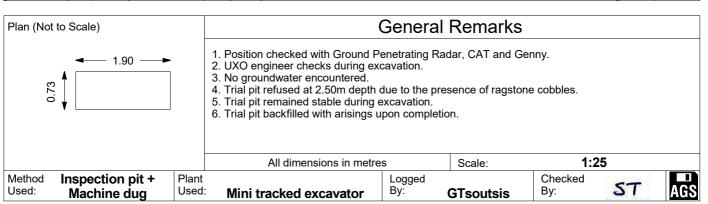
Contract:		Client:	Client:				
Ditton Edge, E	ast Malling	The	The East Malling Trust			-	TP5
Contract Ref:	Start: 09.12.20	Ground Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End: 09.12.20	19.75	E:570782.5 N:157657.2		1	of	1_


			Ena.	••••		10110 21010101010112	•	•
Sam	ples a	and In-si	itu Tests	ter	₩.		Depth	Material
Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
0.00-0.30	1	ES PID	0.1ppm			Grass over dark brown slightly gravelly fine to medium SAND with rootlets present. Gravel is fine to medium subrounded to subangular flints and fine brick fragments. (TOPSOIL)	(0.40)	1/2 24 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
0.50-0.50	2	ES PID	0.1ppm			Light brown, orange slightly gravelly sandy CLAY. Gravel is subangular cobble size of ragstone fragments. Sand is fine. (HYTHE FORMATION)	-	0 - 0 - 0 0 - 0 0
0.80-1.20	1	D				ragstone bands at 1.00m	- -(1.00) - -	0.0. 0.0.
- - -						Light brown, cream clayey gravelly fine to medium SAND. Gravel is	1.40	0 -0.0 -0.0 0 -0.0
1.50-1.70	2	В				subangular cobble size of ragstone frgments. (HYTHE FORMATION) Trial pit terminated at 1.70m	1.70	$ \begin{array}{ccc} & 0 \\ & 0 \\ & 0 \end{array} $
- - -						That pit terminated at 1.70m	-	
-							-	
- -							_	
- - -							-	
- - -							_	
							-	
- - -							_	
- - -							- -	
-							_	
-								

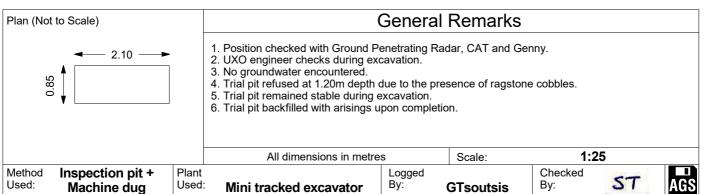
Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			7	ГР6
Contract Ref:	Start:	09.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	09.12.20		21.09	E:570843.6 N:157610.1		1	of	1


	JLL		Eliu.	09.1	2.20	21.03 L.3700-3.0 N. 137010.1		01 1
	1	I	itu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	>	Ba	Bossiphon of State	ness)	
0.00-0.30	1	ES	0.2000			Grass over dark brown slightly gravelly slightly sandy CLAY. Gravel is fine to medium subrounded to subangular flints and fine brick fragments. Sand is fine. (TOPSOIL)	(0.50)	7 12 - 7 12 - 7 17 - 87 13 - 74 17 - 74 18 - 77 17 - 73
0.30		PID	0.3ppm				0.50	15. <u>11. 11. 11.</u>
0.50-0.50 0.50	2	ES PID	0.1ppm			Light brown, orange gravelly slightly gravelly sandy CLAY. Gravel is fine to coarse subangular to angular ragstone fragments. Sand is fine. (HYTHE FORMATION)	(0.60)	
0.80-1.10	1	D					1.10	
-						\ at 1.00m ragstone bands Light brown, cream gravelly SAND. Gravel is subangular cobble size of ragstone fragments. Sand is fine to medium. (HYTHE FORMATION)	-	
1.50-1.80	2	В					(0.70)	
						Trial pit terminated at 1.80m.	1.80	200
-							_	
							_	
							_	
							-	
-							-	
-							_	
							_	
-							-	

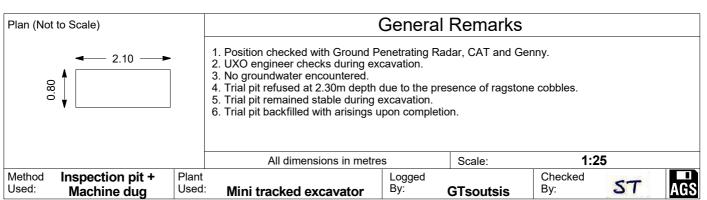
Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			٦	ГР7
Contract Ref:	Start:	09.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	09.12.20		19.51	E:570850.4 N:157700.8		1	of	1


				Liid.					•. •
8	Samp	les a	nd In-si	itu Tests	Water	Backfill	Description of Obsta	Depth	Material
Dept	th	No	Туре	Results	Ma	Вас	Description of Strata	(Thick ness)	
0.00-0.3	30	1	ES PID	0.2000			Grass over dark brown slightly gravelly sandy CLAY with rootlets present. Gravel is fine to medium subrounded to subangular flints and fine brick fragments. Sand is fine. (TOPSOIL)	_ _(0.35) - 0.35	\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\frac{1}\)\(\
0.50-0.5	50	2	ES PID	0.2ppm 0.1ppm			Light brown, orange slightly sandy CLAY with rare subangular cobbles size of ragstone fragments. Sand is fine.	-	00
0.80-1.1	10	1	D	0. гррпп				-	000 -0-0-
-								1.50	0-00
1.50-1.8	30	2	D				Light brown, orange slightly gravelly clayey SAND. Gravel is fine to medium subrounded to subangular flints and cobble size of ragstone fragments. Sand is fine to medium. from 2.00m becoming slightly clayey fine to medium SAND.	- - - -	
2.20-2.5	50	3	В				IIOIII 2.00III becoming siigility diayey iiile to medium GAND.	(1.50)	
2.80-3.0	00	4	D				Trial with a sound to the death 2000 or	3.00	00 <u>00</u>
							Trial pit completed at 3.00m.	- - - - - - - -	

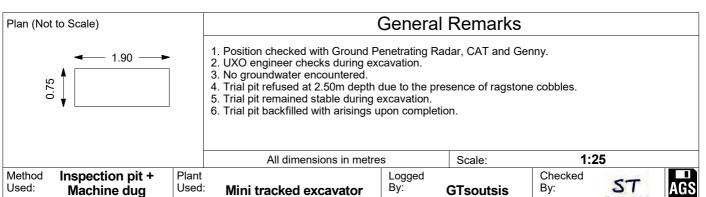
Contract:			Client:		Trial Pit:				
Ditton Edge, E	ast Malling		The	East Malling Trust			-	TP8	3
Contract Ref:	Start: 09.12.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End: 09.12.20		19.57	E:570927.1 N:157681.5		1	of	1	


	JZZ	34	End:	U9.1	2.20	19.57 E.370327.1 N.137001.3	ı	ot I
	1		itu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Type	Results	≥	Be	·	ness)	Legend
0.00-0.30	1	ES				Grass over dark brown slightly gravelly sandy CLAY with rootlets present. Gravel is fine to medium subrounded to subangular flints. Sand is fine. (TOPSOIL)	(0.30)	17 · 24 · 17 · 24 · 17 · 24 · 17 · 24 · 17 · 24 · 17 · 24 · 17 · 24 · 17 · 24 · 17 · 24 · 17 · 24 · 24 · 24 · 24 · 24 · 24 · 24 · 2
0.30		PID	0.1ppm			Light brown, orange slightly sandy CLAY occasional subangular cobble size of flint and ragstone fragments. Sand is fine. (HYTHE FORMATION)	-	00:0 0:0
0.60-0.60	2	ES PID	0.1ppm				(0.90)	
0.80-1.10	1	D					-	00.0
							1.20	0-0
						Light brown, cream gravelly fine to medium SAND. Gravel is subangular cobble size of ragstone fragments. (HYTHE FORMATION)	-	
1.50-1.90	2	В					-	
-							(1.30)	000
- - 2.20-2.50	3	D					- - -	
•							2.50	6000 6000
=						Trial pit terminated at 2.50m.	_	
-							-	
							-	
							-	
_							_	
-							-	
							_	
							-	
=							-	
-							-	
•							-	
							-	
-								
•								
_								
:								
•								

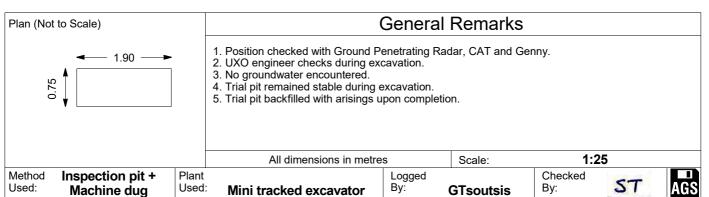
Contract:				Client:		Trial Pit	:		
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			٦	ГР9
Contract Ref:	Start:	09.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	09.12.20		18.50	E:570941.4 N:157759.9		1	of	1


	JLL	UT	Eliu.	09.1	2.20	10.00		01 1
	1	T	itu Tests	Water	Backfill	Description of Strata	(Thick	Material Graphic
Depth	No		Results	>	Ř		ness)	Legend
0.00-0.30	1	ES				Grass over dark brown slightly gravelly slightly sandy CLAY. Gravel is fine subrounded to subangular flints. Sand is fine. (TOPSOIL)	(0.30) 0.30	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
0.30		PID	0.4ppm			Light brown, orange slightly gravelly sandy CLAY. Gravel is subangular cobble size of ragstone fragments. Sand is fine to medium.	-	0.0.0
0.50-0.50 0.50	2	ES PID	0.5ppm			(HYTHE FORMATION)	(0.90)	<u>0</u> .0.0
0.80-0.80	1	D				ragstone bands at 0.80m	- - -	000 -000 000
-					****	Trial nit terminated at 1 20m	1.20	70-5-
						Trial pit terminated at 1.20m.		
							- - -	
-							- -	
-							- -	
-							_ - -	
							-	

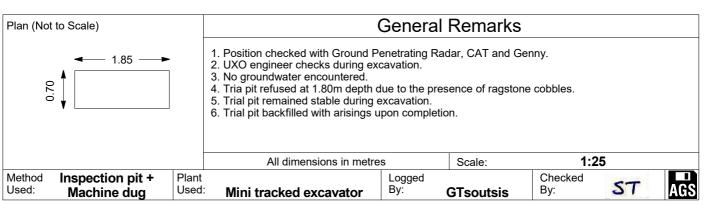
Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The East Malling Trust				TF	P10
Contract Ref:	Start:	09.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	09.12.20		18.91	E:570968.3 N:157716.3		1	of	1


	3 ZZ	J 1	Ena:	09.1	2.20	10.31 E.370300.3 N. 1377 10.3	ı	ot I
-			tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Graphic
Depth	No	Туре	Results	≥	B		ness)	Legend
0.00-0.30	1	ES				Grass over dark brown slightly sandy CLAY with rootlets present. Sand is fine. (TOPSOIL)	(0.30)	7.544.97 7.544.97 5.4.54
0.30		PID	0.1ppm			Light brown slightly orange clayey fine to medium SAND. (HYTHE FORMATION)	0.50	
0.50-0.50 0.50 0.80-1.10	2	ES PID	0.1ppm				-	
150450	2	D				from 1.10m becoming slightly clayey fine SAND	(1.50)	
1.50-1.50	3	В				Cream gravelly fine to medium SAND. Gravel is subangular cobble	1.80	0. O.
-		_				size of ragstone fragments. (HYTHE FORMATION)	(0.50)	
_						Trial pit terminated at 2.30m.	2.30	000
							- - - - - - - - - - - - - - - - - - -	

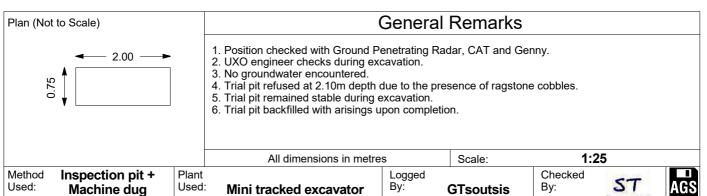
Contract:				Client:		Trial Pit			
Ditton Edge, E	ast M	alling		The East Malling Trust				TI	P11
Contract Ref:	Start:	10.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	10.12.20		19.04	E:571070.2 N:157723.5		1	of	1_


	5 22	34	End:	10.1	2.20	19.04 E.37 1070.2 N. 137723.3	ı	ot I
Samp Depth	oles a		tu Tests Results	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic Legend
0.00-0.30	1	ES				Grass over dark brown slightly gravelly sandy CLAY with rootlets present. Gravel is fine to medium subrounded to subangular fints. Sand is fine. (TOPSOIL)	ness) (0.35)	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
0.30		PID	0.2ppm			Light brown, orange slightly gravelly clayey fine to medium SAND. Gravel is subangular cobble size ragstone fragments.	0.35	0.0.0
0.50-0.50 - 0.50	2	ES PID	0.1ppm			(HYTHE FORMATION)	-	0.00
0.80-1.10	1	D					_ (0.85) _ _	0.0 00 00
1.40-1.80	2	В				Cream gravelly fine to medium SAND. Gravel is subangular cobble size ragstone fragments. (HYTHE FORMATION)	1.20	0 - 00 0 00 0 00 0 00
- - -						from 1.50m becoming very gravelly fine to coarse subangular to angular ragstone.	(1.30)	00000000000000000000000000000000000000
2.00-2.30	3	В					-	0 0 0 0 0 0 0 0 0 0
2.50-2.50	4	D				Trial pit terminated at 2.50m.	2.50	ρ _λ
-							_	
-							-	
-							-	
-							-	
-								
-							- -	
-							-	

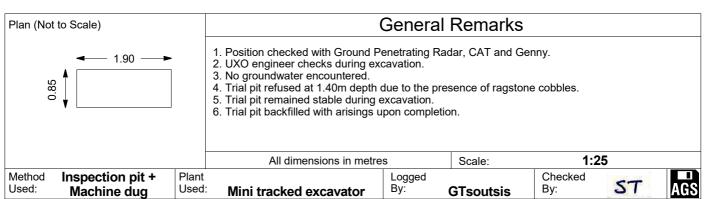
Contract:				Client:	Trial Pit:				
Ditton Edge, Ea	ast M	alling		The I			TI	P12	
Contract Ref:	Start:	10.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	10.12.20		20.37	E:571177.0 N:157691.5		1	of	1_


	522	54	End:	10.12	2.20	20.37	E:5/11//.0 N:15/691.5		1	of 1
			tu Tests Results	Water	Backfill	D	escription of Strata		(Thick	Material Graphic
Depth 0.00-0.30	No 1	Type ES	Results	>		Grass over dark brown s fine. (TOPSOIL)	sandy CLAY with rootlets present. Sa	ind is	ness) (0.30)	Legend
0.30		PID	0.3ppm			Light brown, orange so subrounded to subangular (HYTHE FORMATION)	andy CLAY with rare fine to me r flint. Sand is fine.	edium	0.30 - -	. <u></u>
0.60-0.60 0.60 0.80-1.10	2	ES PID D	0.1ppm						- - -	
- - -	•	5				from 0.80 becoming ragstone fragments.	occasional subangular cobble siz	e of	 _(1.50) _	
1.30-1.50 - -	2	В				from 1.20m becoming medium to coarse subrour	very gravelly slightly sandy CLAY. Gra nded to subangular ragstone fragments	vel is	- - -	
 1.80-2.00 - - -	3	В				Dark brown slightly sandy ragstone fragments. Sand (HYTHE FORMATION)	CLAY occasional subangular cobble s I is fine to medium.	ize of	1.80 - - -	0 .00
2.50-2.80	4	В				at 2.20m ragstone into Sand is fine to medium.	erbedded with dark brown very sandy C	CLAY.	- - (1.20) - -	000 000
 - - -						7from 2.90m becoming	g cream gravelly fine to medium S	AND. √	3.00	0-00
- - -						Gravel is cobble size of ra Trial pit completed at 3.00	igstone fragments.		- - -	
_ - -									- - -	
 - -									- 	
 -									-	

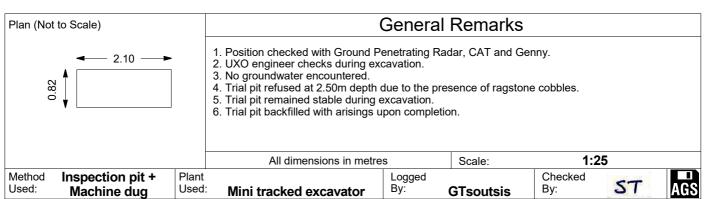
Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The	East Malling Trust			TF	P13
Contract Ref:	Start:	10.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	10.12.20		20.37	E:571100.7 N:157624.2		1	of	1


		· · · · · ·	Lina.		_:	20:01 2:01:1:00:1:1:1:01:02:1:2		<u> </u>
Sam	ples a	and In-si	itu Tests	ter	Backfill	5	Depth	Material
Depth	No	Туре	Results	Water	Bac	Description of Strata	(Thick ness)	Graphic Legend
0.00-0.30	1	ES				Grass over dark brown sandy CLAY with rootlets present. Sand is fine. (TOPSOIL)	(0.35)	7. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
0.30 0.50-0.50 0.50	2	PID ES PID	0.2ppm 0.1ppm			Light brown, orange slightly gravelly clayey SAND. Gravel is subangular cobbles size of ragstone fragments. Sand is fine. (HYTHE FORMATION)	0.33	0 00
0.80-1.10	1	D	о. трртт				(1.15)	00.0 -0.0 -0.0 -0.0
-						from 1.00m becoming fine to medium sandy CLAY.	-	0 - 00
1.40-1.40 1.50-1.80	2 3	D B				Cream gravelly fine to medium SAND. Gravel is subangular cobble	1.50	000
1.30-1.00						size of ragstone fragments. (HYTHE FORMATION)	(0.30)	000
-						Trial pit terminated at 1.80m.	1.80	$ \overset{\circ}{\cap}\overset{\circ}{\dots}\overset{\circ}{\cap}\overset{\circ}{\cap}$
_							-	
_							-	
_							-	
_							-	
_							-	
							_	
-							-	
_							_	
_							-	
_							-	
_							-	
_							_	
_							-	
-							-	
-							-	
-							-	
							-	

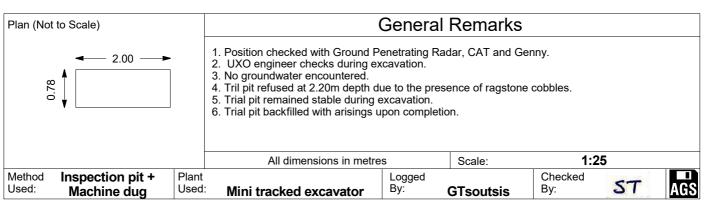
Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			TF	P14
Contract Ref:	Start:	10.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	10.12.20		21.70	E:571214.5 N:157614.8		1	of	1


	JZZ	54	Ena:	10.1	2.20	21.70 E.37 1214.3 N. 137014.0	ı	OT I
Sam _l Depth	oles a		tu Tests Results	Water	Backfill	Description of Strata	Depth (Thick	Graphic
		• •	Results	>	ш		ness)	Legend
0.00-0.30	1	ES				Grass over dark brown slightly sandy CLAY with rootlets present. Sand is fine. (TOPSOIL)	(0.30)	., r, y,
0.30		PID	0.3ppm			Light brown, orange slightly sandy slightly gravelly sandy CLAY. Gravel is fine to coarse subangular to angular flints and ragstone. Sand is fine.	0.30	
0.50-0.50 0.50	2	ES PID	0.1ppm			(HYTHE FORMATION)	-	
0.80-1.10	1	D					(1.30)	
1.30-1.60	2	В				from 1.25m ragstone bands interbedded with fine sandy CLAY.	1.60	
1.70-2.00	3	В				Cream gravelly fine to medium SAND. Gravel is subangular cobble size of ragstone fragments. (HYTHE FORMATION)	(0.50)	
_						Trial pit terminated at 2.10m.	2.10	ö.0
-							_	
-							_	
-							-	
-							_	
							_	
-							 -	
-							-	
-							_	
-							-	
-							-	

Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The	East Malling Trust			TF	P15
Contract Ref:	Start:	10.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	10.12.20		20.09	E:571050.6 N:157596.3		1	of	1


			Liid.			20100 2101 100010 111 101 00010		•
Sam	ples a	and In-si	tu Tests	Water	Backfill	Description of Charts	Depth	Material Graphic
Depth	No		Results	Wa	Вас	Description of Strata	(Thick ness)	Legend
0.00-0.30	1	ES				Grass over dark brown very clayey fine to medium SAND with rootlets present. (TOPSOIL)	(0.30)	70.70.70.7 7.57.7.74.74.74.75 5.78.77.75
0.30		PID	0.1ppm			Light brown, orange slightly sandy CLAY occasional subangular cobble size ragstone fragments. Sand is fine. (HYTHE FORMATION)		0.00
0.50-0.50 0.50 -	2	ES PID	0.1ppm				(1.10)	000 -0.0 000
1.00-1.30	1	D					- - -	0 - 00
_							1.40	0, 00
-						\at 1.30m ragstone bands Trial pit terminated at 1.40m.	-	
_							-	
_								
-							-	
-							-	
-							-	
_								
-							-	
_							-	
_								
_							-	
-							-	
-							-	
_							-	
-							-	
-							-	
-							_	
-							-	
-							F	
							<u> </u>	
_							-	
-							-	

Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			TF	P16
Contract Ref:	Start:	10.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	10.12.20		21.72	E:571141.9 N:157591.9		1	of	1


	JZZ	34	Ena:	10.1	2.20	21.72 E.371141.9 N.137391.9	<u>I</u>	ot I
	1		tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Type	Results	>	m	'	ness)	Legend
0.00-0.20	1	ES				Grass over dark brown sandy CLAY with rootlets present. Sand is fine. (TOPSOIL)	0.20	1
0.20		PID	0.1ppm			Slightly light brown, orange slightly gravelly clayey fine to medium SAND. Gravel is fine to coarse subrounded to subangular flint and ragstone fragments. (HYTHE FORMATION)	-	
0.50-0.50	2	ES PID D	0.1ppm				- -	
1.40-1.40	2	В				from 1.20m becoming very gravelly very sandy CLAY. Gravel is fine to coarse subangular flints. Sand is fine to medium.	- (1.40) - - - -	
-						Cream very gravelly fine to medium SAND. Gravel is subangular	1.60	 O⊶ · · · O O
1.70-2.00	3	В				cobble size of ragstone fragments. (HYTHE FORMATION)	- (0.00)	
2.30-2.50	4	В					2.50	
-						Trial pit terminated at 2.50m.	1.00	

Contract:				Client:		Trial Pit:			
Ditton Edge, Ea	ıst M	alling		The I	East Malling Trust			TF	P17
Contract Ref:	Start:	09.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	09.12.20		19.67	E:570998.8 N:157663.1		1	of	1_

	3 22	54	Ena:	09.12	20	13.07 E.370330.0 N. 137003. I	<u> </u>	ot I
			tu Tests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Depth	No	Туре	Results	>	Ba	2000.1.p.10.11 0.1 0.1 0.1	ness)	Legend
0.00-0.30	1	ES				Grass over dark brown slightly sandy CLAY with rootlets present. Sand is fine. (TOPSOIL)	(0.30)	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
0.30		PID	0.2ppm			Light brown, orange slightly sandy gravelly CLAY. Gravel is subangular cobble size ragstone fragments. Sand is fine. (HYTHE FORMATION)	-	00.0 - 00.0
0.60-0.60	2	ES PID	0.1ppm				(0.90)	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
0.80-1.10	1	D					-	00.0 -0.0 -0.0 00.0
-						Light brown, cream fine to medium SAND with abudant subangular cobble size ragstone fragments. (HYTHE FORMATION)	1.20	0 00 0 00
1.50-1.90	2	D					(1.00)	00000
2.00-2.20	3	D					2.20	0 00
						Trial pit terminated at 2.20m		

Contract:				Client:		Window	Sam	ple:		
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			V	VS'	1
Contract Ref:	Start:	17.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	17.12.20		19.05	E:570825.2 N:157851.9		1	of	2	

J2	2234		Ena:	17.12.20	19	.05 E:3/0023.2 N: 13/031.3	ı	or Z
Progress		Sam	oles / ٦	Tests	Water Backfill & Instru-	Description of Strate	Depth (Thick	Material Graphic
Window Run	Depth	No	Туре	Results	Water Backfill 8 Instru-		ness)	Legend
	0.00-0.30	1	ES	TJV		Grass over dark brown sandy CLAY occasional fine to medium subrounded to subangular flints with rootlets present. Sand is fine. (TOPSOIL)	(0.30)	<u> </u>
	0.30	2	PID	0.2ppm TJV	î.º.ºH.º	Firm light brown orange slightly sandy CLAY. Sand is fine to medium. , (HYTHE FORMATION)	•	
	0.50		PID	0.1ppm				
	0.80-1.10	3	D			-		<u></u>
	1.00-1.45	1	SPT	N=11			(1.70)	
1.00 - 2.00 (75mm dia) 100% rec	1.50-2.00	4	D			from 1.30m becoming slighlty gravelly sandy CLAY. Gravel is cobble size of ragstone. Sand is fine to medium.	• • •	
- X	2.00-2.45	2	SPT	N=11		Firm light brown orange, mottled slightly sandy CLAY.	2.00	
2.00 - 3.00 (65mm dia) 100% rec	2.00-3.00	5	D			Sand is fine to medium. (HYTHE FORMATION)	(1.60)	
. .	3.00-3.45 3.00-3.50	3 6	SPT D	N=4			· -	
	- - - - -				0000	from 3.50m becoming dark brown very sandy with ragstone cobbles present. Sand is fine to medium. Borehole terminated at 3.60m	3.60	<u> </u>
	-							

ı	Drilling Pro	gress and	Water Ob	servation	S	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
						Ľ

General Remarks

- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
- 2. UXO engineer checks during drilling.

- 3. Inspection pit to 1.00m depth.
 4. No groundwater encountered.
 5. Borehole refused at 3.60m depth due to the presence of ragstone cobbles.
- 6. Installed with gas and groundwater standpipe, response zone 0.50m to 3.50m

1:25 All dimensions in metres Scale:

Drilled Logged GTsoutsis Checked Method Inspection pit + **Plant** Used: Used: Ву: **Tracked window** Premier 110 **KDS**

								1	MIIA	DUV	V SA	4 IVI			UG
Contract:							Client:	1					Windov	v Samp	le:
Dit	ton Edg	e, Ea	ıst M	lalling				The	East Ma	alling Tı	rust				WS1
Contract Ref:				17.12.20	Gr	ounc	Leve	I (m AOD):		Grid Co-ord			Sheet:		
52	2254		End:	17.12.20			19.	05	E:57	0825.2 N	N:1578	51.9		2	of 2
Progress		Sam	ples / T	Tests		ē	g - Lig							Depth	Material
Window Run	Depth	No	Туре	Results		Water	Backfill & Instru-mentation		Des	scription of	Strata			(Thick ness)	Graphic Legend
	_													-	
_	_													-	
_	-													-	
														_	
-	-													-	
-	-													-	
-	-													-	
_														-	
	=													-	
-	_													-	
_	_													-	
_	-													-	
-	-													-	
-	-														
_	_													-	
-	-													-	
_	_														
_	-													-	
_	=													-	
_	-													-	
_	-														
-	_													-	
_	_													-	
_															
-	-													-	
_	_													-	
_	_													-	
_														-	
-	-													-	
-	-													-	
_	_													-	
														-	

[Drilling Pro	gress and	Water O	bservations	s			Con	orol	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
		(m)	(m)	(mm)	(m)	bgl.						
						29						
						<u> </u>		 			4.05	
						A	II almensioi	ns in metres		Scale:	1:25	
Method	Inspec	tion pit +	⊦ Plar	nt			Drilled		Logge	d GTsoutsis	Checked	
Used:		d windov		d: Pr	emier 11	0	Ву:	KDS	Ву:		Ву: 57	AGS

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07_| Log_WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 22/04/21 - 11:12 | GT1 |

Used: Tracked window sampling Premier 110 By: **KDS** By: AGS

Contract:				Client:		Window	San	nple:		
Ditton Edge, Ea	ast Ma	alling		The I	East Malling Trust			V	VS2	2
Contract Ref:	Start:	17.12.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	17.12.20		18.22	E:570913.8 N:157798.4		1	of	1	

52	2254		End:	17.12.20		18.	22	E:570913.8	8 N:157798.4		1	of 1
Progress		Sam	oles / T	ests	Water	Backfill		Description	of Strata		Depth (Thick	Material Graphic
Window Run	Depth	No	71	Results	Š	Ba		-			ness)	Legend
	0.00-0.30	1	ES	TJV			Gravel is	fine to medium s rootlets present.	ntly gravelly sandy subrounded to suba Sand is fine to mo	ngular	(0.30)	1/2 24 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
	0.30		PID	0.1ppm			Firm light b	rown, orange sand bangular flints. Sar	dy CLAY occasional nd is fine to medium.	fine to	- 0.00	
	0.50 0.50	2	ES PID	TJV 0.1ppm			(HYTHE FO	ORMATION)			_	
	0.80-1.10	3	D				from 0.7	70m becoming ver s fragaments.	ry clayey SAND wit	h rare	-	
	1.00-1.45 1.00-2.00	1 4	SPT D	N=8							- (1.70) -	
1.00 - 2.00 (75mm dia) 100% rec	- - -										-	
V	-										2.00	
2.00 - 2.50 (65mm dia)	2.00-2.38	5	SPT	2,10/13,14,22 for 75mm			medium S fragments.	e light brown, or: SAND occasional DRMATION)	ange very clayey f cobble size ra	ine to gstone	(0.50)	000 -0-0 000
20% rec	-						∖cobble size	ragstone.	ottled SAND occas	ssional	2.50	<u>a</u> 0-
	-						Borenole te	rminated at 2.50m			-	
-	-										-	
	-										_	
	-										-	
	- -										-	
-	-										<u>-</u>	
	- -										_	
	-										-	

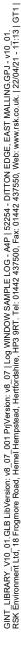
	Drilling Pro	gress and	Water Ol	servations	3			Con	امدما	Domorko	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks	
		(m)	(m)	(mm)	(m)	excar 2. UXO 3. Inspe 4. No gr 5. Borel	vation. engineer clection pit to coundwater nole refused	necks during 1.00m depth encountered d at 2.50m de	drilling epth du		T and Genny prior to
						Α .	II dimensio	ns in metres		Scale:	1:25
Method Used:		tion pit + d windov			emier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked ST AGS

Contract:				Client:		Window	San	nple:		
Ditton Edge, E	ast M	alling		The I	East Malling Trust			V	VS3	3
Contract Ref:	Start:	17.12.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	17.12.20		19.20	E:570796.3 N:157723.8		1	of	2	

52	2254		End:	17.12.20	19.	20	E:5/0/96.3 N:15//23.8		1	of 2
Progress		Sam	oles / 1	Tests	- 8 - io				Depth	Material
Window Run	Depth	No	Туре	Results	Water Backfill & Instrumentation		Description of Strata		(Thick ness)	
-	0.00-0.30	1	ES	TJV		Grass ove Gravel is flints with	er dark brown slightly gravelly sandy of fine to medium subrounded to suba rootlets present. Sand is fine to me	ngular	(0.30)	17 · 24 · 17 · 24 · 17
-	0.30		PID	0.2ppm		Gravel is fi	brown, orange slightly gravelly sandy ine to coarse subrounded to subangular	CLAY. flints.	0.30	
-	0.50 - 0.50 -	2	ES PID	TJV 0.2ppm		Sand is fin (HYTHE F	e to medium. ORMATION)		-	<u> </u>
-	0.80-1.10	3	D						-	
	1.00-1.45	1	SPT	N=7					- (1.70) -	
1.00 - 2.00 (75mm dia) - 100% rec	1.50-2.00	4	D			CLAY. Gra	.50m becoming very gravelly very avel is fine to coarse subangular rag e to medium.	sandy stone.	- - - -	
- 2.00 - 2.70 (65mm dia) 100% rec	2.00-2.45 2.00-2.50	2 5	SPT D	N=10		Gravel is c	orown, orange very gravelly very sandy obble size ragstone. Sand is medium. ORMATION)	CLAY.	2.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 	-				*****	Rorehole to	erminated at 2.70m.		2.70	-0.0.

	Drilling Pro	gress and	l Water Ob	servations	S	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)]
		()	()	()	()	╢.
						,
						2
						{
						6
						⊩

General Remarks


- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.
- 2. UXO engineer checks during drilling.

- 3. Inspection pit to 1.00m depth.
 4. No groundwater encountered.
 5. Borehole refused at 2.70m depth due to the presence of ragstone cobbles.
- 6. Installed with gas and groundwater standpipe, response zone 0.50m to 2.50m

1:25 All dimensions in metres Scale:

Drilled Logged GTsoutsis Checked Method Inspection pit + Plant Used: Used: Ву: **Tracked window** Premier 110 **KDS**

Contract:					Client:		Windo	w Samp	ole:	
Ditt	ton Edge, Ea	ast M	lalling		The	East Malling Trust			WS:	3
Contract Ref:		Start:	17.12.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52	2254	End:	17.12.20		19.20	E:570796.3 N:157723.8		2	of 2	
Progress	Sam	ples /	Γests	te	fill & ation	December of Objects		Depth	Mater	

Progress Samples / Tests						· -			
Progress	Progress Samples / Tests				ter	Backfill & Instru- mentation	Department of Charter	Depth (Thick	Materia Graphic Legend
Window Run	Depth	No	Туре	Results	Water	Back Inst	Description of Strata	ness)	Legend
								-	
-								-	
.	-							-	
-								-	
-								-	
-								-	
-									
-								-	
-								-	
	-								
-								-	
-								-	
-								-	
-								-	
_									
-								-	
-								-	
-								-	
_									
-									
-								-	
	-								
-								_	
-									
ļ								-	
-								-	
								_	
-								_	
				I	1	1			1

<u>:</u> [Orilling Pro			oservations				Con	oral	Remarks		
5	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	-	Nemaiks		
2			(m)	(m)	(mm)	(m)	bgl.						
5													
í													
2													
							A	II dimension	ns in metres		Scale:	1:25	
ا أ	Method	Inspec	tion pit +	Plar				Drilled			d GTsoutsis	Checked	
إِ	Used:	Tracked	d windov	v Use	^{d:} Pr	emier 11	0	By:	KDS	By:		By: 3 /	AGS

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

sampling

Contract:				Client:		Window	San	nple:		
Ditton Edge, Ea	ast Ma	alling		The I	East Malling Trust			V	VS4	4
Contract Ref:	Start:	17.12.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	17.12.20		20.72	E:570787.5 N:157625.1		1	of	1	

52	2254		End:	17.12.20		20.	/2	E:5/0/8/.5	N:15/625.1		1	of 1
Progress		Sam	ples / 1	Tests		■		•		•	Depth	Material
Window Run	Depth	No	Туре		Water	Backfill		Description	of Strata		(Thick ness)	Graphic Legend
	0.00-0.30	1	ES	TJV			Gravel is ragstone w	fine to mediun ith rootlets presen	ntly gravelly sandy n subangular to a t. Sand is fine to m	ngular	(0.30)	1/ 2/1/ 1/1/ 1/ 2/1/ 1/1/
	0.30		PID	0.1ppm			(TOPSOIL) Firm light I Gravel is	prown, orange slig	hlty gravelly sandy ze subangular ra	CLAY.	0.30	
	0.50 0.50	2	ES PID	TJV 0.1ppm			fragments. (HYTHE F0	ORMATION)	-		-	
	0.80-1.10	3	D								_	
	1.00-1.45	1	SPT	N=12							(1.93)	
1.00 - 2.00 (75mm dia) 100% rec	1.50-2.00	4	D								-	
	2.00-2.23	2	SPT	5,5/10			from 1.9	90m becoming gra	velly slightly sandy	CLAY.	- -	
				for 75mm			fragments.	Sand is fine to med		Γ	- - 2.23	<u></u>
	-						occasional	<pre>!.10m becoming y cobble size ragsto erminated at 2.23m</pre>		SAND	_	
	-										-	
-	_										-	
	_										-	
	-										- -	
	-										-	
-	_										<u>-</u>	
	_										-	
	-										-	

	Drilling Pro	ogress and	Water Ol	bservation	s			Con	امدما	Domorko	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	excav 2. UXO 3. Inspe 4. No gi 5. Borel	vation. engineer c ection pit ha oundwater nole refuse	d with Ground hecks during and dug to 1.0 encountered d at 2.20m de	d Penet drilling 00m dep	pth.	AT and Genny prior to
						Α	ll dimensio	ns in metres		Scale:	1:25
Method Used:		tion pit + d windov			remier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked ST AGS
	iracke	u windov	v 000	PI	enner i i	U	-,.	עטא	-,.		Aug

Contract:				Client:		Window	ıple:	le:	
Ditton Edge, Ea	ast M	alling		The I			V	VS5	
Contract Ref:	Start:	17.12.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	17.12.20		19.93	E:570831.1 N:157662.5		1	of	2

52	2254		End:	17.12.20	19.	93	E:570831.1 N:15766	52.5	1	of 2
Progress			ples / T		Water Backfill & Instrumentation		Description of Strata		Depth (Thick	Graphic
Window Run	Depth	No			Bac Name		•		ness)	Legend
- -	0.00-0.30	1	ES	TJV		Grass over present. Sa	er dark brown sandy CLAY and is fine. (TOPSOIL)	with rootlets	(0.30)	1/ 3/1/ 3/1/ 2/1/ 3/1/ 3/1/
-	0.30		PID	0.2ppm		Firm to ati	ff light brown, orange sandy sl	iabthy aroyally	0.30	76.70
-	0.30		FID	0.2ррп		CLAY. Gra	ivel is fine to medium subangu	lar to angular	-	
-	0.50	2	ES PID	TJV	*::	ragstone fr	agments. Sand is fine to mediur	n.		
=	0.50		PID	0.3ppm					-	
	0.80-1.10	3	D						-	<u>·</u> ······
	_								(1.35)	
-	1.00-1.45	1	SPT	N=58					-	
- 1.00 - 1.60	1.20-1.60	4	D						-	
(75mm dia) - 100% rec									t	<u> </u>
- <u>L</u>	_								-	•
	_				*****				1.65	
-	_						n ragstone cobbles present.		/	
- -	_					Borehole te	erminated at 1.60m.			
_	-								-	
-	_								-	
-	_									
-	_								-	
-	_								-	
-										
-	_								-	
-	_								-	
-										
-	_								-	
-	_								-	
-	_									
-	-								-	
-	-								+	
-									t	
_	_								-	
-	-								+	
-	-								†	
-									-	
	I	1	1	I	1 1	1			1	

	Drilling Pro	gress and	Water Ob	servation	S	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	<u> </u>
						2
						6

General Remarks

- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.

- 2. UXO engineer checks during drilling.
 3. Inspection pit hand dug to 1.00m depth.
 4. No groundwater encountered.
 5. Borehole refused at 1.65m depth due to the presence of ragstone cobbles.
- 6. Installed with gas and groundwater standpipe, response zone 0.50m to 1.50m

All dimensions in metres 1:25 Scale:

Method Inspection pit + Used: **Tracked window**

Plant Used: Premier 110 Drilled Ву: **KDS** Logged GTsoutsis

Checked

Contract:					Client:	Client:				
	ton Edge, E	ast M	lalling			East Malling Trust	VVIIIdo	w Samp	ws5	,
Contract Ref:	u.gu, _			Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			_
52	2254	End:	17.12.20		19.93	E:570831.1 N:157662.5		2	of 2	
Progress	Sam	ples / ٦	Tests	ter	S -i.ig				Materia	
Window Run	Window Run Depth No Type Results		0	ackfill Instru	Description of Strata			Graphi		

Progress	ss Samples / Tests					∞ . 5			Material
Window Run	Depth		Туре		Water	Backfill & Instru- mentation	Description of Strata	(Thick ness)	Material Graphic Legend
								-	
								-	
	_							_	
-								-	
-								-	
								-	
-								-	
								-	
-	-							_	
-								-	
-								-	
. [
								_	
								_	
	-							_	
								-	
								-	
								-	
. [
								-	
								-	
-	-							_	
. [-	
								-	
								-	
								-	
-								-	
								-	

		Orilling Pro			bservations				Con	aral	Remarks		
מת, דום	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	<u> </u>		Gene	51 ai	- INGIIIAI NO		
200			,			,	bgl.						
60													
,													
0							Δ	II dimension	s in metres		Scale:	1:25	
107 EIVE	Method Used:	Inspec	tion pit +	Plan Use		emier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked By: ST	AGS

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

sampling

Contract:				Client:		Window	San	ıple:	
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			V	VS6
Contract Ref:	Start:	17.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	17.12.20		19.23	E:570913.3 N:157715.4		1	of	1

J2	2234		End:	17.12.20		19.	23 E:5/0913.3 N:15//15.4	ı	ot I
Progress Samples / Tests Window Run Depth No Type Result 0.00-0.30 1 ES TJV				Tests	ter	Backfill	Decemption of Strate	Depth	Material Graphic
Window Run	1				Water	Вас	Description of Strata	(Thick ness)	Legend
- -	0.00-0.30	1	ES	TJV			Grass over dark brown slightly gravelly sandy CLAY. Gravel is fine to medium subangular flints with rootlets present. Sand is fine to medium. (TOPSOIL)	(0.30)	7 0 7 0 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-	0.30		PID	0.2ppm			Firm light brown, orange sandy CLAY with rare cobble size ragstone. Sand is fine.	-	<u> </u>
- - -	0.50 0.50	2	ES PID	TJV 0.1ppm			(HYTHE FORMATION)	-	
-	0.80-1.10	3	D					(1.30)	
1.00 1.50	1.00-1.45	1	SPT	N=47				-	
- 1.00 - 1.50 _ (75mm dia) _ 100% rec	1.20-1.50	4	D					-	
-	-						∖ragstone fragments and pockets of sand at 1.50m /	1.60	
-	-						Borehole terminated at 1.60m.	-	
-	_							_	
-	_								
- -	-							_	
- -	_							_	
- -	-							-	
_ -	-							_	
- -	-							- -	
- -	-							_	
- -	-							-	
- -	-							-	
-	-							<u>-</u> -	
- -	-							-	
-	F							-	

		Orilling Pro	gress and	Water Ol	servations	3			Can	امدما	Domorko	
i	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks	
			(m)	(m)	(mm)	(m)	excar 2. UXO 3. Inspe 4. No gr 5. Borel	vation. engineer o ection pit ha roundwater nole refuse	checks during and dug to 1.0 encountered ad at 1.60m de	drilling)0m dep l. epth du	oth.	T and Genny prior to
							А	II dimensio	ns in metres		Scale:	1:25
	Method Used:		tion pit +		1	emier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked ST AGS

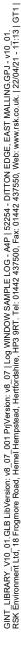
GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

Cor	ntract:				Client:		Window	San	ıple:		
	Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			V	VS	7
Cor	ntract Ref:	Start:	16.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
	52254	End:	16.12.20		18.81	E:571017.4 N:157736.4		1	of	2	<u>></u>

54	2254		Ena:	16.12.20	10	0.0	E:5/ 101/.4 N:15//30.4	ı	or Z
Progress	Vindow Run Depth No Type Resu					ation	Description of Strata	Depth (Thick	Material Graphic
Window Run	-				Water Backfill & Instru-	ment	•	ness)	Legend
-	0.00-0.30	1	ES	TJV			Grass over dark brown sandy CLAY with rootlets present. Sand is fine to medium. (TOPSOIL)	0.30	'', '', '', '', '', '', '', '', '', '',
_	0.30		PID	0.2ppm			Firm to stiff light brown, orange fine to medium sandy CLAY occasional fine to coarse subangular ragstone fragments.	0.30	
-	0.50 0.50	2	ES PID	TJV 0.2ppm			(HYTHE FORMATION)	- -	<u> </u>
-	0.80-1.10	3	D			* * * * * * * * * * * * * * * * * * * *		(1.20)	
1.00 - 1.50	1.00-1.30	1 4	SPT	1,5/5,5 for 75mm		• • • • • • • • • • • • • • • • • • • •		-	
- (75mm dia) - ▼	1.20 1.40						from 1.20m becoming gravelly sandy CLAY. Gravel is fine to coarse subangular of ragstone. Sand is fine to medium.	1.50	
-	-						Borehole terminated at 1.50m.	-	
-	-							-	
-	-							-	
_								-	
-	-							-	
-	_							_	
-	-							-	
-	-							-	
-	-							-	
-	-							-	
-								-	
_	-							- -	

ı	Orilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
		(***)	()	()	()	╢.
						,
						4
						∥'
						ΙH

General Remarks


- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.

- 2. UXO engineer checks during drilling.
 3. Inspection pit hand dug to 1.20m depth.
 4. No groundwater encountered.
 5. Borehole refused at 1.50m depth due to the presence of ragstone cobbles.
- 6. Installed with gas and groundwater standpipe, response zone 0.50m to 1.50m

1:25 All dimensions in metres Scale:

Drilled Logged GTsoutsis Checked Method Inspection pit + **Plant** Used: Used: Ву: **Tracked window** Premier 110 **KDS**

								1	VV		JVV	2 A	VIVII			.UG
Contract: Ditton Edge, East Malling						Client:							Windov	v Samp	le:	
Dit	ton Edg	e, Ea	ist M	lalling				The	Eas	st Malling	g Trus	t				WS7
Contract Ref:				16.12.20	Gro	ounc	Leve	(m AOD):	Na	itional Grid C	o-ordina	te:		Sheet:		
52	2254		End:	16.12.20			18.	81	E	E:571017	'.4 N:1	5773	6.4		2	of 2
Progress		Sam	ples /	Tests		Ē	g - Lig								Depth	Material
Window Run	Depth	No	Туре	Results		Water	Backfill & Instru- mentation			Description	on of Str	ata			(Thick ness)	Graphic Legend
_	_														_	
-	-														-	
-	_														-	
-	-														-	
-	-														=	
_	_														-	
-	-														-	
_															_	
_	_														-	
_	_														-	
-	-														-	
_	-														-	
-	-														-	
_	-														-	
_	-														-	
-	-														-	
_	-														-	
-	-														-	
_	-														_	
-															-	
_	-														_	
-															-	
_	-														-	
-	_														- -	
-	-														-	
	_														-	
-	-														-	
_	-														_	
†	†														-	

		Orilling Pro			bservations				Con	orol	Remarks		
5	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	- II al	Remarks		
2			(m)	(m)	(mm)	(m)	bgl.						
5													
8													
·													
								II dimonoio	ns in metres		Scale:	1:25	
<u>.</u>							A	ii dimensio	ns in metres			1.20	
	Method	Inspec	tion pit +	⊦ Plar				Drilled			d GTsoutsis	Checked	AGS
اِ نِ	Used:	Tracke	d windov	v Use	d: Pr	emier 11	0	Ву:	KDS	Ву:		By: 3	AGS

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07_| Log_WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 22/04/21 - 11:13 | GT1 |

Tracked window sampling

Contract:				Client:		Window	San	ple:		
Ditton Edge, Ea	ast M	alling		The I			V	VS	8	
Contract Ref:	Start:	16.12.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	16.12.20		20.20	E:570971.4 N:157613.1		1	of	2	

J2	LZ		Lilu.	10.12.20	20.	20 2.370371.714.137013.1		01 2
Progress	ogress Samples / Tests dow Run Depth No Type Resu			Гests	<u>~</u> ≪ ¹ io		Depth	Material
Window Run	Depth	No	Туре	Results	Water Backfill & Instrumentation	Description of Strata	(Thick ness)	Graphic Legend
_	-	1		TJV		Grass over dark brown slightly gravelly very clayey SAND with rootlets present. Gravel is fine to coarse subangular ragstone fragments. Sand is fine to medium. (TOPSOIL)	0.30	\(\frac{1}{2}\)\cdot \(1
-	0.30	2	PID	0.1ppm	*.* = .*	Firm light brown, orange very sandy CLAY occasionally fine to coarse subangular ragstone fragments. (HYTHE FORMATION)	-	
_	0.50	3	PID D	0.2ppm			-	
	1.00-1.45	1	SPT	N=54			(1.30) - -	
- 1.00 - 1.50 (75mm dia) 100% rec	1.20-1.60	4	D			from 1.20m becoming stiff slightly sandy CLAY with ragstone fragments.	- -	
	-					∖at 1.50m ragstone cobbles present.	1.60	
_	_					Borehole terminated at 1.60m.	_	
_	-						-	
-	-						_	
-	-						-	
-	-						- -	
-	-						- -	
	-						-	
-	-						-	
-	-						-	
-	- -						-	
_	- -						_	
-	-						_	
-	-						-	

[Orilling Pro	gress and	Water Ob	servations	3	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
		()	()	()	(***)	1
						;
						ا ا
						ŀ

GINT LIBRARY V10 01.GLB LibVersion: v8 07 001 PriVersion: v8 07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10 01. RSK Environment Ltd. 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk. | 22/04/21 - 17:13 | GT1 |

General Remarks

- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.

- 2. UXO engineer checks during drilling.
 3. Inspection pit hand dug to 1.00m depth.
 4. No groundwater encountered.
 5. Borehole refused at 1.60m depth due to the presence of ragstone cobbles.
- 6. Installed with gas and groundwater standpipe, response zone 0.50m to 1.50m

All dimensions in metres 1:25 Scale:

Drilled Logged GTsoutsis Checked Method Inspection pit + **Plant** Used: Ву: Used: **Tracked window** Premier 110 **KDS**

Contract:					Client:		Windo	w Sam	ole:	
Dit	Ditton Edge, East Malling				The	East Malling Trust			W	S8
Contract Ref:		Start:	16.12.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52	2254	End:	16.12.20		20.20	E:570971.4 N:157613.1		2	of	2
Progress	Sam	ples / ٦	Tests	tet	cfill & tru-tation	Description of Strata		Depth		

Progress Sa			Ena:	16.12.20		20.			or Z
Progress	5	Samp	oles / T	Tests	ter	fill & rru- ation	5	Depth	Material
Window Run	Depth	No	Туре	Results	Wat	Backfill & Instru- mentation	Description of Strata	(Thick ness)	Material Graphic Legend
_								_	
-								-	
								-	
	-							-	
-								-	
-								-	
-								_	
-								_	
								-	
-								_	
-	-							_	
-								-	
-								_	
-								-	
								_	
-								-	
_								-	
_								_	
								_	
-								-	
-								-	
-								-	
-								-	
. [-							-	
-								_	
-								-	
-								-	
-								-	
-								-	
ļ								-	

<u> </u>		Orilling Pro	gress and	Water C	bservation	s			Cara		Damarka		
ia, nei	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
oginore no			(m)	(m)	(mm)	(m)	bgl.						
III Ltd, 10													
							А	II dimensio	ons in metres		Scale:	1:25	
707	Method Used:		tion pit - d windov			emier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked By:	T AGS

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

Tracked window sampling

Premier 110

AGS

Contract:				Client:		Window	San	ple:		
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			V	VS!	9
Contract Ref:	Start:	16.12.20	Groun	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	16.12.20		19.79	E:571065.6 N:157654.3		1	of	1	

32	2204		Ena:	16.12.20		15.	79 E.37 1003.0 N. 137 034.3	ı	ot I
Progress		Samp	oles / ٦	ests	Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Window Run	Depth		Туре	Results	×	ä	•	ness)	Legend
-	0.00-0.30	1	ES	TJV			Grass over dark brown slightly gravelly sandy CLAY with rootlets present. Gravel is fine to coarse subangular ragstone fragments. Sand is fine. (TOPSOIL)	0.30	1/ 3/1/ 3/1/ 1/ 3/1/ 3/1/
-	0.30	2	PID	0.2ppm TJV			Loose light brown, orange very clayey SAND frequent cobble size ragstone fragments. (HYTHE FORMATION)	-	
- - -	0.50 0.50 -	2	ES PID	0.2ppm				-	
1.00 - 2.00	1.00-1.45 1.00	1 3	SPT B	N=6				_ _(1.80) _ _	
(75mm dia) - 100% rec	-						from 1.50m becoming stiff slightly sandy gravelly CLAY. Gravel is cobble size of ragstone fragments. Sand is fine.	-	
-	2.00-2.08	2	SPT	NP			\dagger\at 2.00m becoming medium dense to dense cream fine to medium SAND abundant cobble size ragstone.	2.10	
-	-						Borehole terminated at 2.10m.	-	
-	-							_	
-	-							-	
-	_							-	
-	-							- -	
-	-							_	
-	-							-	
- -	-							_	
- -	-							- -	
-	<u>-</u> -							_	

		grood aria	vvalci Oi	servations	,			Can	امدما	Damarka	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks	
		(m)	(m)	(mm)	(m)	excav 2. UXO 3. Inspe 4. No gr 5. Borel	vation. engineer c ction pit ha oundwater nole refuse	hecks during and dug to 1.0 encountered d at 2.10m de	drilling Om der epth due	oth.	T and Genny prior to
						A	II dimensio	ns in metres		Scale:	1:25
lethod sed:		tion pit +			emier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked ST AGS

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

Contract:				Client:		Window	San	ıple:		
Ditton Edge, Ea	ıst M	alling		The I	East Malling Trust			W:	S1 (0
Contract Ref:	Start:	16.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:				
52254	End:	16.12.20		20.98	E:571168.1 N:157638.3		1	of	2	,

Progress Samples		Ena:	16.12.20		:0.3	70 E:3/1100.1 N:13/030.3	ı	or Z	
					Water Backfill &	stru- rtation	Description of Strata	Depth (Thick	Graphic
Window Run	Depth	No	Type	Results	W	mer		ness)	Legend
-	0.00-0.40	1	PID	TJV 0.3ppm	* • • • • • • • • • • • • • • • • • • •		Grass over dark brown slightly gravelly sandy CLAY with rootlets present. Gravel is fine to medium subrounded to subangular flint. Sand is fine. (TOPSOIL) Firm light brown, orange slightly gravelly sandy CLAY. Gravel is fine to coarse subrounded to subangular flints. Sand is fine to medium. (HYTHE FORMATION)	0.25	
-	0.80-1.10	2	D		* ` • • • • • • • • • • • • • • • • • •			-	
1.00 - 2.00 (75mm dia) 100% rec	1.20-2.00	3	SPT D	N=17			Medium dense to very dense light brown, orange slightly gravelly clayey SAND. Gravel is fine to coarse subrounded to subangular ragstone fragments. Sand is fine to medium. (HYTHE FORMATION)	1.10	
-	2.00-2.45	2	SPT	N=66	*		at 2.00m ragstone cobbles present.	- - -	
-	-				• • • • •	\$ \$ \$ \$	Borehole terminated at 2.45m.	- 2.45 - -	
- - -	- - -							- - -	
-	-							-	
-	-							-	
-	-							- - -	
-	-							-	

[Orilling Pro	gress and	Water Ob	servations	8	
Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth (m)	
		, ,	, ,	` '	, ,	1
						3
						6

General Remarks

- 1. Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation.

- 2. UXO engineer checks during drilling.
 3. Inspection pit hand dug to 1.00m depth.
 4. No groundwater encountered.
 5. Borehole refused at 2.45m depth due to the presence of ragstone cobbles.
- 6. Installed with gas and groundwater standpipe, response zone 0.50m to 2.00m

1:25 All dimensions in metres Scale:

Method Inspection pit + Used: **Tracked window** **Plant** Used: Premier 110 Drilled Ву: **KDS** Logged GTsoutsis

Checked

Contract:	Contract:						Windov	v Sam	ple:	
Ditton Edge, East Malling					The	East Malling Trust			W	S10
Contract Ref:		Start:	16.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52	2254	End:	16.12.20		20.98	E:571168.1 N:157638.3		2	of	2
Б	0				v					

	ogress Samples / Tests low Run Depth No Type Resul			% ⊑				
Window Run			Ι	Water	Backfill & Instru- mentation	Description of Strata	Depth (Thick ness)	Material Graphic Legend
			- 71		ш Е		11033)	9
-	-						-	
							-	
	-						_	
-	-						_	
-	-						-	
-	-						-	
-	-						-	
-							-	
	-						-	
	-							
-	-						-	
-							-	
-	-						-	
-	-						-	
-	-						-	
-	-						-	
-	-						-	
	-						-	
-	-						-	
-							-	
-	-						-	
_	-						-	
-							-	
	_						-	
	-						-	
-	-						-	
-							Ĺ	
							-	
-							-	
-							-	
	-						-	
-	-						<u> </u>	

I	Drilling Pro	gress and						Con	oral	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	zı aı	INCIIIAINS		
		(m)	(m)	(mm)	(m)	bgl.						
						Δ	ll dimensio	ns in metres		Scale:	1:25	
Method	Inspec	tion pit +	+ Plan	ıt.			Drilled	113 111 1110 1103	Logge	d GTsoutsis	Checked	
Used:		d windov		d: Pr	emier 11	0	Ву:	KDS	Ву:		Ву: 57	AGS

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

Contract:				Client:		Window	San	nple:	
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			WS	S11
Contract Ref:	Start:	16.12.20	Groun	d Level (m AOD):	National Grid Co-ordinate:	Sheet:			
52254	End:	16.12.20		20.86	E:571221.8 N:157663.6		1	of	1

32	2254		Ena:	16.12.20		20.	00 E:3/ 1221.0 N: 13/003.0	ı	ot I
-	1	oles / ٦		Water	Backfill	Description of Strata	Depth (Thick	Graphic	
Window Run	Depth	No	Type	Results	8	Ba	•	ness)	Legend
-	0.00-0.30	1	ES	TJV			Grass over dark brown sandy CLAY with rootlets present. Sand is fine to medium. (TOPSOIL)	0.30)	\(\frac{1}{12} \cdot \frac{1}{2} \cdot \frac{1}{
-	0.30		PID	0.4ppm			Firm to stiff light brown, orange very gravelly sandy CLAY. Gravel is fine to coarse subangular flints and ragstone fragments. Sand is fine to medium.	- 0.00	
-	0.50 0.50	2	ES PID	TJV 0.2ppm			(HYTHE FORMATION)	-	<u> </u>
-	0.80-1.20	3	D					_(1.43)	
- 1.00 - 1.50 (75mm dia) 100% rec	1.00-1.38	1	SPT	4,13/18,18,16 for 75mm				-	
	1.50-1.73	2	SPT	22,24/32 for 75mm			at 1.30m becoming slightly sandy with cobble size ragstone.	4.70	
-	_						Borehole terminated at 1.73m.	- 1.73 -	
-	-							_	
-									
-	-							-	
-	-							_	
-	-							-	
-	-							-	
-	-							-	
- -	-							<u>-</u>	
-	-							-	
-								_	
- -	_							_	
-	-							-	

[Drilling Pro	gress and	Water Ol	servations	3	General Remarks						
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks		
		(m)	(m)	(mm)	(m)	excav 2. UXO 3. Inspe 4. No gi 5. Borel	vation. engineer o ction pit ha coundwater nole refuse	checks during and dug to 1.0 r encountered ed at 1.73m de	drilling)0m dep l. epth du	pth.	T and Genny prior to	
						А	II dimensio	ons in metres		Scale:	1:25	
Method Used:		tion pit +		1	emier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked ST AGS	

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

Contract:				Client:	Client:						
Ditton Edge, Ea	ast M	alling		The I	East Malling Trust			W:	S12		
Contract Ref:	Start:	16.12.20	Grour	nd Level (m AOD):	National Grid Co-ordinate:	Sheet:					
52254	End:	16.12.20		22.36	E:571207.5 N:157568.2		1	of	1		

32	2254		Ena:	16.12.20		ZZ.	30 E:37 1207.3 N: 137 300.2	ı	ot I
		Sam	oles / T		Water	Backfill	Description of Strata	Depth (Thick	Material Graphic
Window Run	Depth		Туре		Wa	Ba		ness)	Legend
-	0.00-0.30	1	ES	TJV			Grass over dark brown slightly sandy CLAY with rootlets present. Sand is fine. (TOPSOIL)	(0.30)	7 6 . 7 6 . 7 11 . 34.12 . 7.17 34.12 . 77.17 . 3
-	0.30	2	PID	0.2ppm TJV			Firm light brown, orange gravelly sandy CLAY. Gravel is cobble size ragstone fragments. Sand is fine to medium.	-	0.0
-	0.50	2	PID	0.2ppm			(HYTHE FORMATION)	-	00
-	0.80-1.10	3	D					(1.20)	
	1.00-1.45	1	SPT	N=6				-	
1.00 - 1.80 (75mm dia)	1.20-1.50	4	D					1.50	
- `100% rec´	_						Medium dense to dense cream fine to medium SAND with frequent cobble size ragstone. (HYTHE FORMATION)	(0.30)	0 .00
ļ — V	-						Borehole terminated at 1.80m.	1.80	ň ∴∴'n'n
-	-							-	
_	_							-	
-	-							-	
-	-							-	
_	_							_	
_	_							-	
-	-							- -	
-	-							-	
-	-							_	
	_							-	
-	_							-	

	[Orilling Pro	gress and	Water O	bservations	3	General Remarks								
	Date	Time	Borehole Depth (m)	Casing Depth (m)	Borehole Diameter (mm)	Water Depth			Gen	erai	Remarks				
•			(III)	(111)	(11111)	(III)	Position checked with Ground Penetrating Radar, CAT and Genny prior to excavation. UXO engineer checks during drilling. Inspection pit hand dug to 1.00m depth. No groundwater encountered. Borehole refused at 1.80m depth due to the presence of ragstone cobbles. Borehole backfilled with arisings upon completion.								
							Α	ll dimensio	ns in metres		Scale:	1:25			
	Method Used:		tion pit + d windov		• •	emier 11	0	Drilled By:	KDS	Logge By:	d GTsoutsis	Checked ST AGS			

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | Log WINDOW SAMPLE LOG - A4P | 52254 - DITTON EDGE, EAST MALLING.GPJ - v10_01.
RSK Environment Ltd, 18 Frogmore Road, Hemel Hempstead, Hertfordshire, HP3 9RT. Tel: 01442 437500, Fax: 01442 437550, Web: www.rsk.co.uk | 22/04/21 - 17:13 | GT1 |

APPENDIX I GROUND GAS MONITORING DATA

	Start Date	End Date	[Pressures]	<u>Previous</u>	<u>During</u>	<u>Start</u>	<u>End</u>	Equipment Used & Remarks
Round 1	06/01/2021	06/01/2021		-	-	-	-	Weather: Overcast
Round 2	12/01/2021	12/01/2021		-	-	-	-	Weather: Overcast
Round 3	20/01/2021	20/01/2021		-	-	-	-	Weather: Light rain

Exploratory Position ID	Monitoring Round	Measured Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	
WS1	1	3.45	06/01/2021 09:00:00	-	1016	0.0 _(SS)	DRY	0.1	0.0	19.8	0.0	
WS1	1		15 secs	-	-	-	-	0.1	0.0	19.8	0.0	
WS1	1		30 secs	-	-	-	-	0.1	0.0	19.8	0.0	
WS1	1		60 secs	-	-	-	-	0.2	0.0	19.6	0.0	
WS1	1		90 secs	-	-	-	-	0.2	0.0	19.6	0.0	
WS1	1		120 secs	-	-	-	-	0.3	0.0	19.6	0.0	
WS1	1		180 secs	-	-	-	-	0.3	0.0	19.6	0.0	
WS1	1		240 secs	-	-	-	-	0.3	0.0	19.6	0.0	
WS1	1		300 secs	-	-	-	-	0.3	0.0	19.6	0.0	
WS1	2	3.45	12/01/2021 09:00:00	-	1009	0.0 _(SS)	DRY	0.1	0.0	20.3	0.0	
WS1	2		15 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	2		30 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	2		60 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	2		90 secs	-	-	-	-	0.1	0.0	20.2	0.0	
WS1	2		120 secs	-	-	-	-	0.1	0.0	20.2	0.0	
WS1	2		180 secs	-	-	-	-	0.1	0.0	20.2	0.0	_
WS1	2		240 secs	-	-	-	-	0.2	0.0	20.2	0.0	
WS1	2		300 secs	-	-	-	-	0.2	0.0	20.2	0.0	

Key: I = Initial, Min = Minimum, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

Anerley Court Half Moon Lane Hildenborough Tonbridge Kent, TN11 9HU

Compiled By	Date	Checked By	Date	Contract Ref:
	30/01/2021			
Contract:				Page:
	Ditton Edge,	East Malling		

52254

.

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	
WS1	3	3.40	20/01/2021 09:00:00	-	989	0.0 _(SS)	3.30	0.1	0.0	20.3	0.0	
WS1	3		15 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	3		30 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	3		60 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	3		90 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	3		120 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	3		180 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS1	3		240 secs	-	-	-	-	0.1	0.0	20.2	0.0	
WS1	3		300 secs	-	-	-	-	0.1	0.0	20.2	0.0	
WS10	1	2.00	06/01/2021 10:00:00	-	1016	0.0 _(SS)	1.90	0.1	0.0	19.9	0.0	
WS10	1		15 secs	-	-	-	-	0.1	0.0	19.9	0.0	
WS10	1		30 secs	-	-	-	-	0.1	0.0	19.9	0.0	
WS10	1		60 secs	-	-	-	-	0.1	0.0	19.7	0.0	
WS10	1		90 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	1		120 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	1		180 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	1		240 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	1		300 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	2	2.00	12/01/2021 10:00:00	-	1009	0.0 _(SS)	1.95	0.2	0.0	20.1	0.0	
WS10	2		15 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS10	2		30 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS10	2		60 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS10	2		90 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	2		120 secs	-	-	-	-	0.2	0.0	19.7	0.0	

Key: I = Initial, Min = Minimum, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

Anerley Court
Half Moon Lane
Hildenborough
Tonbridge
Kent TN11 9HU

Compiled By	Date	Checked By	Date	Contract Ref:
	30/01/2021			
Contract:				Page:
	Ditton Edge,	East Malling		

52254

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	
WS10	2		180 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	2		240 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	2		300 secs	-	-	-	-	0.2	0.0	19.7	0.0	
WS10	3	2.00	20/01/2021 10:00:00	-	990	0.0 _(SS)	1.90	0.1	0.0	20.1	0.0	
WS10	3		15 secs	-	-	-	-	0.1	0.0	20.1	0.0	
WS10	3		30 secs	-	-	-	-	0.1	0.0	20.1	0.0	
WS10	3		60 secs	-	-	-	-	0.1	0.0	20.1	0.0	
WS10	3		90 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS10	3		120 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS10	3		180 secs	-	-	-	-	0.2	0.0	19.9	0.0	
WS10	3		240 secs	-	-	-	-	0.2	0.0	19.9	0.0	
WS10	3		300 secs	-	-	-	-	0.2	0.0	19.9	0.0	
WS3	1	2.50	06/01/2021 09:10:00	-	1018	0.0 _(SS)	2.40	0.1	0.0	19.8	0.0	
WS3	1		15 secs	-	-	-	-	0.1	0.0	19.8	0.0	
WS3	1		30 secs	-	-	-	-	1.3	0.0	18.7	0.0	
WS3	1		60 secs	-	-	-	-	1.3	0.0	18.7	0.0	
WS3	1		90 secs	-	-	-	-	1.9	0.0	18.7	0.0	
WS3	1		120 secs	-	-	-	-	1.9	0.0	17.3	0.0	
WS3	1		180 secs	-	-	-	-	2.4	0.0	17.3	0.0	
WS3	1		240 secs	-	-	-	-	2.6	0.0	16.9	0.0	
WS3	1		300 secs	-	-	-	-	2.6	0.0	16.9	0.0	
WS3	2	2.50	12/01/2021 09:10:00	-	1009	0.0 _(SS)	2.45	0.1	0.0	20.5	0.0	
WS3	2		15 secs	-	-	-	-	0.1	0.0	20.5	0.0	
WS3	2		30 secs	-	-	-	-	0.1	0.0	20.5	0.0	

Key: I = Initial, Min = Minimum, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

Anerley Court Half Moon Lane Hildenborough Tonbridge Kent, TN11 9HU

	Compiled By	Date	Checked By	Date	Contract Ref:
		30/01/2021			
Co	ontract:				Page:
		Ditton Edge,	East Malling		

52254

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	
WS3	2		60 secs	-	-	-	-	0.1	0.0	20.4	0.0	
WS3	2		90 secs	-	-	-	-	0.1	0.0	20.4	0.0	
WS3	2		120 secs	-	-	-	-	0.3	0.0	20.4	0.0	
WS3	2		180 secs	-	-	-	-	0.3	0.0	20.4	0.0	
WS3	2		240 secs	-	-	-	-	0.3	0.0	20.4	0.0	
WS3	2		300 secs	-	-	-	-	0.3	0.0	20.4	0.0	
WS3	3	2.50	20/01/2021 09:10:00	-	990	0.0 _(SS)	2.40	0.1	0.0	20.3	0.0	
WS3	3		15 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS3	3		30 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS3	3		60 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS3	3		90 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS3	3		120 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS3	3		180 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS3	3		240 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS3	3		300 secs	-	-	-	-	0.2	0.0	20.1	0.0	
WS5	1	1.50	06/01/2021 09:20:00	-	1016	0.0 _(SS)	1.45	0.1	0.0	19.9	0.0	
WS5	1		15 secs	-	-	-	-	0.1	0.0	19.9	0.0	
WS5	1		30 secs	-	-	-	-	0.1	0.0	19.9	0.0	
WS5	1		60 secs	-	-	-	-	0.1	0.0	19.8	0.0	
WS5	1		90 secs	-	-	-	-	0.2	0.0	19.8	0.0	
WS5	1		120 secs	-	-	-	-	0.2	0.0	19.8	0.0	
WS5	1		180 secs	-	-	-	-	0.2	0.0	19.6	0.0	
WS5	1		240 secs	-	-	-	-	0.2	0.0	19.6	0.0	
WS5	1		300 secs	-	-	-	-	0.2	0.0	19.6	0.0	

Key: I = Initial, Min = Minimum, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

Anerley Court Half Moon Lane Hildenborough Tonbridge Kent, TN11 9HU

Compiled By	Date	Checked By	Date	Contract Ref:
	30/01/2021			
Contract:				Page:

Ditton Edge, East Malling

52254

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	
WS5	2	1.50	12/01/2021 09:20:00	-	1008	0.0 _(SS)	1.46	0.1	0.0	20.4	0.0	
WS5	2		15 secs	-	-	-	-	0.1	0.0	20.4	0.0	
WS5	2		30 secs	-	-	-	-	0.1	0.0	20.4	0.0	
WS5	2		60 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS5	2		90 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS5	2		120 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS5	2		180 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS5	2		240 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS5	2		300 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS5	3	1.50	20/01/2021 09:20:00	-	990	0.0 _(SS)	1.40	0.1	0.0	20.3	0.0	
WS5	3		15 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS5	3		30 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS5	3		60 secs	-	-	-	-	0.1	0.0	20.3	0.0	
WS5	3		90 secs	-	-	-	-	0.2	0.0	19.9	0.0	
WS5	3		120 secs	-	-	•	-	0.2	0.0	19.9	0.0	
WS5	3		180 secs	-	-	-	-	0.2	0.0	19.9	0.0	
WS5	3		240 secs	-	-	-	-	0.3	0.0	19.6	0.0	
WS5	3		300 secs	-	-	-	-	0.3	0.0	19.6	0.0	
WS7	1	1.50	06/01/2021 09:30:00	-	1016	0.0 _(SS)	DRY	0.1	0.0	19.5	0.0	
WS7	1		15 secs	-	-	-	-	0.1	0.0	19.5	0.0	
WS7	1		30 secs	-	-	-	-	0.1	0.0	19.5	0.0	
WS7	1		60 secs	-	-	-	-	0.2	0.0	19.5	0.0	
WS7	1		90 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS7	1		120 secs	-	-	-	-	0.2	0.0	19.4	0.0	

Key: I = Initial, Min = Minimum, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

Anerley Court Half Moon Lane Hildenborough Tonbridge Kent, TN11 9HU

Compiled By	Date	Checked By	Date	Contract Ref:
	30/01/2021			
Contract:				Page:

Ditton Edge, East Malling

5 of **7**

52254

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	
WS7	1		180 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS7	1		240 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS7	1		300 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS7	2	1.48	12/01/2021 09:30:00	-	1009	0.0 _(SS)	DRY	0.1	0.0	20.5	0.0	
WS7	2		15 secs	-	-	-	-	0.1	0.0	20.5	0.0	
WS7	2		30 secs	-	-	-	-	0.2	0.0	20.5	0.0	
WS7	2		60 secs	-	-	-	-	0.2	0.0	20.5	0.0	
WS7	2		90 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	2		120 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	2		180 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	2		240 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	2		300 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	3	1.48	20/01/2021 09:30:00	-	990	0.0 _(SS)	DRY	0.2	0.0	20.3	0.0	
WS7	3		15 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	3		30 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	3		60 secs	-	-	-	-	0.2	0.0	20.3	0.0	
WS7	3		90 secs	-	-	-	-	0.2	0.0	19.5	0.0	
WS7	3		120 secs	-	-	-	-	0.2	0.0	19.5	0.0	
WS7	3		180 secs	-	-	-	-	0.2	0.0	19.5	0.0	
WS7	3		240 secs	-	-	-	-	0.2	0.0	19.5	0.0	
WS7	3		300 secs	-	-	-	-	0.2	0.0	19.5	0.0	
WS8	1	1.50	06/01/2021 09:45:00	-	1017	0.0 _(SS)	DRY	0.1	0.0	19.5	0.0	
WS8	1		15 secs	-	-	-	-	0.1	0.0	19.5	0.0	
WS8	1		30 secs	-	-	-	-	0.1	0.0	19.5	0.0	

Key: I = Initial, Min = Minimum, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

Anerley Court Half Moon Lane Hildenborough Tonbridge Kent, TN11 9HU

Compiled By	Date	Checked By	Date	Contract Ref:
	30/01/2021			
Contract:				Page:

Ditton Edge, East Malling

6 of **7**

52254

Exploratory Position ID	Monitoring Round	Installation Depth (mbgl)	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)	Atmos Pressure (mb)	Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	
WS8	1		60 secs	-	-	-	-	0.1	0.0	19.4	0.0	
WS8	1		90 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS8	1		120 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS8	1		180 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS8	1		240 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS8	1		300 secs	-	-	-	-	0.2	0.0	19.4	0.0	
WS8	2	1.50	12/01/2021 09:45:00	-	1009	0.0 _(SS)	DRY	0.1	0.0	20.4	0.0	
WS8	2		15 secs	-	-	-	-	0.1	0.0	20.4	0.0	
WS8	2		30 secs	-	-	-	-	0.1	0.0	20.4	0.0	
WS8	2		60 secs	-	-	-	-	0.3	0.0	20.4	0.0	
WS8	2		90 secs	-	-	-	-	0.3	0.0	20.2	0.0	
WS8	2		120 secs	-	-	-	-	0.3	0.0	20.2	0.0	
WS8	2		180 secs	-	-	-	-	0.3	0.0	20.2	0.0	
WS8	2		240 secs	-	-	-	-	0.3	0.0	20.2	0.0	
WS8	2		300 secs	-	-	-	-	0.3	0.0	20.2	0.0	
WS8	3	1.50	20/01/2021 09:45:00	-	989	0.0 _(SS)	DRY	0.2	0.0	20.2	0.0	
WS8	3		15 secs	-	-	-	-	0.2	0.0	20.2	0.0	
WS8	3		30 secs	-	-	-	-	0.2	0.0	20.2	0.0	
WS8	3		60 secs	-	-	-	-	0.2	0.0	20.2	0.0	
WS8	3		90 secs	-	-	-	-	0.2	0.0	20.2	0.0	
WS8	3		120 secs	-	-	-	-	0.2	0.0	20.2	0.0	
WS8	3		180 secs	-	-	-	-	0.2	0.0	20.0	0.0	
WS8	3		240 secs	-	-	-	-	0.2	0.0	20.0	0.0	
WS8	3		300 secs	-	-	-	-	0.2	0.0	20.0	0.0	
								V	0.0			

Key: I = Initial, Min = Minimum, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

Anerley Court Half Moon Lane Hildenborough Tonbridge Kent, TN11 9HU

Compiled By	Date	Checked By	Date	Contr
	30/01/2021			
Contract:				Page:

Ditton Edge, East Malling

tract Ref: **52254**

70.

APPENDIX J ANALYSIS

LABORATORY CERTIFICATES FOR SOIL

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/11074

Issue Number: Date: 12 January, 2021

Client: RSK Environment Ltd Tonbridge

Anerley Court, Half Moon Lane, Hildenborough

Tonbridge

Kent

TN119HU

Project Manager: Giorgos Tsoutsis

Project Name: Ditton Edge, East Malling

Project Ref: 52254 Order No: N/A

Date Samples Received: 15/12/20 **Date Instructions Received:** 21/12/20 **Date Analysis Completed:** 11/01/21

Prepared by: Approved by:

Melanie Marshall

Richard Wong **Laboratory Coordinator** Client Manager

						ect iver. 32				
Lab Sample ID	20/11074/2	20/11074/5	20/11074/7	20/11074/8	20/11074/10	20/11074/12	20/11074/15			
Client Sample No										
Client Sample ID	TP1	TP3	TP4	TP5	TP6	TP7	TP8			
Depth to Top	0.50	0.00	0.00	0.00	0.00	0.00	0.60			
Depth To Bottom		0.30	0.30	0.30	0.30	0.30			ion	
Date Sampled	11-Dec-20	11-Dec-20	11-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20		Limit of Detection	4
Sample Type	Soil - ES	Soil - ES	Soil - ES		of D	Method ref				
Sample Matrix Code	4AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1	2.5	4.5	2.7	2.4	<0.1	% w/w	0.1	A-T-044
pH _D M#	6.99	7.35	6.98	6.88	6.50	6.66	6.46	рН	0.01	A-T-031s
Total Organic Carbon _D ^{M#}	0.92	-	1.21	-	0.99	-	0.33	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	24	14	10	16	11	18	9	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	0.9	0.7	0.6	0.8	0.7	0.8	0.7	mg/kg	0.5	A-T-024s
Copper _D ^{M#}	11	10	13	19	19	22	8	mg/kg	1	A-T-024s
Chromium _D ^{M#}	28	22	20	21	23	27	24	mg/kg	1	A-T-024s
Lead _D ^{M#}	33	34	40	67	52	71	15	mg/kg	1	A-T-024s
Mercury _D	0.28	<0.17	0.18	0.43	0.49	3.76	<0.17	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	22	20	16	20	19	20	20	mg/kg	1	A-T-024s
Selenium _D ^{M#}	<1	<1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	49	43	43	58	57	60	39	mg/kg	5	A-T-024s
TPH total (>C6-C40) _A M#	<15	<15	-	-	-	-	<15	mg/kg	10	A-T-007s

Lab Sample ID	20/11074/2	20/11074/5	20/11074/7	20/11074/8	20/11074/10	20/11074/12	20/11074/15			
Client Sample No										
Client Sample ID	TP1	TP3	TP4	TP5	TP6	TP7	TP8			
Depth to Top	0.50	0.00	0.00	0.00	0.00	0.00	0.60			
Depth To Bottom		0.30	0.30	0.30	0.30	0.30			<u>io</u>	
Date Sampled	11-Dec-20	11-Dec-20	11-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20		Detection	4 .
Sample Type	Soil - ES	Soil - ES	Soil - ES		₹	od ref				
Sample Matrix Code	4AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	-	-	NAD	NAD	NAD	NAD	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	-	N/A	N/A	N/A	N/A	-			A-T-045

					Cilentino	ject Ret: 52	234			
Lab Sample ID	20/11074/2	20/11074/5	20/11074/7	20/11074/8	20/11074/10	20/11074/12	20/11074/15			
Client Sample No										
Client Sample ID	TP1	TP3	TP4	TP5	TP6	TP7	TP8			
Depth to Top	0.50	0.00	0.00	0.00	0.00	0.00	0.60			
Depth To Bottom		0.30	0.30	0.30	0.30	0.30			ion	
Date Sampled	11-Dec-20	11-Dec-20	11-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20		etect	J
Sample Type	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref				
Sample Matrix Code	4AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limi	Meth
PAH-16MS										
Acenaphthene _A M#	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A M#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A M#	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	<0.03	<0.03	0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	<0.07	0.08	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	<0.08	<0.08	<0.08	<0.08	0.08	<0.08	mg/kg	0.01	A-T-019s

					Ollolle 1 10	ect Ret: 52				
Lab Sample ID	20/11074/2	20/11074/5	20/11074/7	20/11074/8	20/11074/10	20/11074/12	20/11074/15			
Client Sample No										
Client Sample ID	TP1	TP3	TP4	TP5	TP6	TP7	TP8			
Depth to Top	0.50	0.00	0.00	0.00	0.00	0.00	0.60			
Depth To Bottom		0.30	0.30	0.30	0.30	0.30			uo	
Date Sampled	11-Dec-20	11-Dec-20	11-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20	09-Dec-20		stecti	· ·
Sample Type	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref				
Sample Matrix Code	4AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Meth
TPH CWG										
Ali >C5-C6 _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C10-C12 _A M#	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C16-C21AM#	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Ali >C21-C35 _A M#	-	-	3	2	1	2	-	mg/kg	1	A-T-055s
Total Aliphatics _A	-	-	3	2	1	2	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
Aro >C8-C10 _A	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Aro >C16-C21 _A ^{M#}	-	-	<1	<1	<1	<1	-	mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	-	-	10	3	3	5	-	mg/kg	1	A-T-055s
Total Aromatics _A	-	-	10	3	3	5	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)A	-	-	14	5	5	7	-	mg/kg	1	A-T-055s
BTEX - Benzene [#]	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s
MTBE _A #	-	-	<0.01	<0.01	<0.01	<0.01	-	mg/kg	0.01	A-T-022s

					0.10111110	ject iver. 32				
Lab Sample ID	20/11074/18	20/11074/20	20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31			
Client Sample No										
Client Sample ID	TP10	TP11	TP12	TP13	TP14	TP15	TP16			
Depth to Top	0.00	0.00	0.6	0.00	0.5	0.00	0.5			
Depth To Bottom	0.30	0.30		0.30		0.30			<u></u>	
Date Sampled	09-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20		Limit of Detection	4 _
Sample Type	Soil - ES	Soil - ES		of D	Method ref					
Sample Matrix Code	4AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Li mit	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	% w/w	0.1	A-T-044
pH _D M#	-	5.98	7.66	6.56	6.79	6.37	6.47	рН	0.01	A-T-031s
Total Organic Carbon _D ^{M#}	-	-	0.38	-	-	-	-	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	-	11	5	9	10	11	6	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	-	0.7	0.6	0.7	0.9	0.7	0.6	mg/kg	0.5	A-T-024s
Copper _D M#	-	45	11	40	9	16	14	mg/kg	1	A-T-024s
Chromium _D ^{M#}	-	23	24	19	28	18	18	mg/kg	1	A-T-024s
Lead _D ^{M#}	-	44	15	34	14	40	18	mg/kg	1	A-T-024s
Mercury _D	-	<0.17	<0.17	<0.17	<0.17	0.59	<0.17	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	-	18	18	16	23	16	15	mg/kg	1	A-T-024s
Selenium _D ^{M#}	-	1	<1	<1	<1	<1	<1	mg/kg	1	A-T-024s
Zinc _D M#	-	67	40	59	41	47	41	mg/kg	5	A-T-024s
TPH total (>C6-C40) _A M#	-	<15	<15	<15	<15	<15	<15	mg/kg	10	A-T-007s

					Client Pro	ject Ref: 52	254			
Lab Sample ID	20/11074/18	20/11074/20	20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31			
Client Sample No										
Client Sample ID	TP10	TP11	TP12	TP13	TP14	TP15	TP16			
Depth to Top	0.00	0.00	0.6	0.00	0.5	0.00	0.5			
Depth To Bottom	0.30	0.30		0.30		0.30			u O	
Date Sampled	09-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20		etecti	Į
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	4AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Meth
OCP+OPP Combined Pest Suite (incl. Atrazine and Simazine)										
Dichlobenil _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Tecnazene _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Trifluralin _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
alpha-Hexachlorocyclohexane (HCH) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Hexachlorobenzene (HCB) _A	<0.01	-	-					mg/kg	0.01	A-T-056
Simazine _A	<0.01	-	-	•	•	•	•	mg/kg	0.01	A-T-056
Atrazine _A	<0.01	-	-	•	•	•	•	mg/kg	0.01	A-T-056
beta-Hexachlorocyclohexane (HCH) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Quintozene (PCNB) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Chlorothalonil _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
delta-Hexachlorocyclohexane (HCH)A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Triallate _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Heptachlor _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Aldrin _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Triadimefon _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Telodrin _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Isodrin _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Pendimethalin _A	<0.01	-	-	-		-	•	mg/kg	0.01	A-T-056
Heptachlor epoxide _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
trans-Chlordane (Gamma) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
o,p-DDE (2,4)A	<0.01	-	-			-		mg/kg	0.01	A-T-056
Endosulphan I (Alpha)₄	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
cis-Chlordane (Alpha) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
p,p-DDE (4,4) _A	0.05	-	-	-	-	-	-	mg/kg	0.01	A-T-056
DieldrinA	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
o,p-DDD (2,4) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Endrin _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Endosulphan II (Beta) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
p,p-DDD (4,4) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
o,p-DDT (2,4) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Endrin Aldehyde _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Endrin Ketone _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056

D.P-DOT (4.4).		1									
Cilent Sample ID	Lab Sample ID	20/11074/18	20/11074/20	20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31			
Depth to Top	Client Sample No										
Depth To Bottom	Client Sample ID	TP10	TP11	TP12	TP13	TP14	TP15	TP16			
Endosulphants Sulphates, 4-0.01	Depth to Top	0.00	0.00	0.6	0.00	0.5	0.00	0.5			
Endosulphants Sulphates, 4-0.01	Depth To Bottom	0.30	0.30		0.30		0.30			ion	
Endosulphants Sulphates, 4-0.01	Date Sampled	09-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20		etect	
Endosulphato Sulphato	Sample Type	Soil - ES		of D	od re						
p.p-DOT (4-la) c.001	Sample Matrix Code	4AE	Units	Limit	Meth						
o.p-Methoxychlor_A -d.01 - - - mg/kg 0.01 - <td>Endosulphan Sulphate_A</td> <td><0.01</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>mg/kg</td> <td>0.01</td> <td>A-T-056</td>	Endosulphan Sulphate _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
р.—Methoxychlora	p,p-DDT (4,4) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Permethrin II (trans)	o,p-Methoxychlor _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Permethrial It (trans)	p,p-Methoxychlor _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Dichlorovana	Permethrin I (cis) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Mevinphosa	Permethrin II (trans) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Demoton-Ox	Dichlorvos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Demeton-O _A -0.50	Mevinphos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Properation	Demeton-S _A	<0.50	-	-	-	-	-	-	mg/kg	0.5	A-T-056
Dimethoate Dim	Demeton-O _A	<0.50	-	-	-	-	-	-	mg/kg	0.5	A-T-056
Propetamphosa . <t< td=""><td>Phorate_A</td><td><0.01</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>mg/kg</td><td>0.01</td><td>A-T-056</td></t<>	Phorate _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Diazinon (Dimpylate) A Co.01 Co.01 Co.01 A Co.01	Dimethoate _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Disulfotona	Propetamphos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Etrimphosa	Diazinon (Dimpylate) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Chlorpyrifos-methyla	Disulfoton _A	<0.10	-	-	-	-	-	-	mg/kg	0.1	A-T-056
Parathion (Ethyl Parathion)	EtrimphosA	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Methyl Parathiona <0.01 - - - - mg/kg 0.01 AT-0 Pirimiphos-methyla <0.01	Chlorpyrifos-methyl _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Pirimiphos-methyla	Parathion (Ethyl Parathion) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Fenitrothion _A	Methyl Parathion _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Fensulphothion _A	Pirimiphos-methyl _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Fenthiona <0.01	Fenitrothion _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
MalathionA <0.01	Fensulphothion _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Chlorfenvinphos _A <0.01	Fenthion _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Chlorpyrifosa <0.01	MalathionA	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
TrichloronateA <0.01 - - - - mg/kg 0.01 A-T-0 Prothiofos (Tokuthion)A <0.01	Chlorfenvinphos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Prothiofos (Tokuthion)A < 0.01 - - - - - mg/kg 0.01 A-T-0 EthionA < 0.01	Chlorpyrifos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
EthionA <0.01	Trichloronate _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Triazophosa <0.01 - - - - - mg/kg 0.01 A-T-0 Sulprofosa <0.01	Prothiofos (Tokuthion) _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Sulprofosa < 0.01 - - - - - mg/kg 0.01 AT-0 Carbophenothiona < 0.01	EthionA	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Carbophenothion _A <0.01 mg/kg 0.01 A-T-0	Triazophos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
	Sulprofos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Phonology 0.04 ATO	Carbophenothion _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
- - - - mg/kg 0.01	Phosalone	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Azinphos-methyl _A <0.01 mg/kg 0.01 A-T-0	Azinphos-methyl _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056

	00/44074/40	00/44074/00	00/44074/00	00/44074/04	00/44074/07	00/44074/00	00/44074/04			
Lab Sample ID	20/11074/18	20/11074/20	20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31			
Client Sample No										
Client Sample ID	TP10	TP11	TP12	TP13	TP14	TP15	TP16			
Depth to Top	0.00	0.00	0.6	0.00	0.5	0.00	0.5			
Depth To Bottom	0.30	0.30		0.30		0.30			ion	
Date Sampled	09-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20		etection	ref
Sample Type	Soil - ES		t of D	od re						
Sample Matrix Code	4AE	Units	Limit	Method						
Azinphos-ethyl _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056
Coumaphos _A	<0.01	-	-	-	-	-	-	mg/kg	0.01	A-T-056

						COL INCI. OZ				
Lab Sample ID	20/11074/18	20/11074/20	20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31			
Client Sample No										
Client Sample ID	TP10	TP11	TP12	TP13	TP14	TP15	TP16			
Depth to Top	0.00	0.00	0.6	0.00	0.5	0.00	0.5			
Depth To Bottom	0.30	0.30		0.30		0.30			ion	
Date Sampled	09-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20	10-Dec-20		etect	4 .
Sample Type	Soil - ES	Soil - ES		Limit of Detection	Method ref					
Sample Matrix Code	4AE	4AE	4AE	4AE	4AE	4AE	4AE	Units	Limit	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene _A ^{M#}	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A ^{M#}	-	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	-	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	-	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	-	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	-	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	-	<0.08	<0.08	<0.08	<0.08	<0.08	<0.08	mg/kg	0.01	A-T-019s

Lab Sample ID	20/11074/32						
Client Sample No							
Client Sample ID	TP17						
Depth to Top	0.00						
Depth To Bottom	0.30					ion	
Date Sampled	09-Dec-20					Detection	*
Sample Type	Soil - ES					- Jo	od ref
Sample Matrix Code	4AE				Units	Limit	Method
% Stones >10mm _A	<0.1				% w/w	0.1	A-T-044

			Oneme i rej	ject Ret: 52	204			
Lab Sample ID	20/11074/32							
Client Sample No								
Client Sample ID	TP17							
Depth to Top	0.00							
Depth To Bottom	0.30						uo	
Date Sampled	09-Dec-20						stecti	
Sample Type	Soil - ES						of De	od re
Sample Matrix Code	4AE					Units	Limit of Detection	Method ref
OCP+OPP Combined Pest Suite (incl. Atrazine and Simazine)								
Dichlobenil _A	<0.01					mg/kg	0.01	A-T-056
Tecnazene _A	<0.01					mg/kg	0.01	A-T-056
Trifluralin _A	<0.01					mg/kg	0.01	A-T-056
alpha-Hexachlorocyclohexane (HCH) _A	<0.01					mg/kg	0.01	A-T-056
Hexachlorobenzene (HCB) _A	<0.01					mg/kg	0.01	A-T-056
Simazine _A	<0.01					mg/kg	0.01	A-T-056
Atrazine _A	<0.01					mg/kg	0.01	A-T-056
beta-Hexachlorocyclohexane (HCH) _A	<0.01					mg/kg	0.01	A-T-056
Quintozene (PCNB) _A	<0.01					mg/kg	0.01	A-T-056
Chlorothalonil _A	<0.01					mg/kg	0.01	A-T-056
delta-Hexachlorocyclohexane (HCH)A	<0.01					mg/kg	0.01	A-T-056
Triallate _A	<0.01					mg/kg	0.01	A-T-056
Heptachlor _A	<0.01					mg/kg	0.01	A-T-056
Aldrin _A	<0.01					mg/kg	0.01	A-T-056
Triadimefon _A	<0.01					mg/kg	0.01	A-T-056
Telodrin _A	<0.01					mg/kg	0.01	A-T-056
Isodrin _A	<0.01					mg/kg	0.01	A-T-056
Pendimethalin _A	<0.01					mg/kg	0.01	A-T-056
Heptachlor epoxide _A	<0.01					mg/kg	0.01	A-T-056
trans-Chlordane (Gamma) _A	<0.01					mg/kg	0.01	A-T-056
o,p-DDE (2,4)A	<0.01					mg/kg	0.01	A-T-056
Endosulphan I (Alpha)₄	<0.01					mg/kg	0.01	A-T-056
cis-Chlordane (Alpha) _A	<0.01					mg/kg	0.01	A-T-056
p,p-DDE (4,4) _A	<0.01					mg/kg	0.01	A-T-056
DieldrinA	<0.01					mg/kg	0.01	A-T-056
o,p-DDD (2,4) _A	<0.01					mg/kg	0.01	A-T-056
Endrin _A	<0.01					mg/kg	0.01	A-T-056
Endosulphan II (Beta) _A	<0.01					mg/kg	0.01	A-T-056
p,p-DDD (4,4) _A	<0.01					mg/kg	0.01	A-T-056
o,p-DDT (2,4) _A	<0.01					mg/kg	0.01	A-T-056
Endrin Aldehyde _A	<0.01	 				mg/kg	0.01	A-T-056
Endrin Ketone _A	<0.01					mg/kg	0.01	A-T-056

			 	ject Kei. 32			
Lab Sample ID	20/11074/32						
Client Sample No							
Client Sample ID	TP17						
Depth to Top	0.00						
Depth To Bottom	0.30					ion	
Date Sampled	09-Dec-20					etect	.
Sample Type	Soil - ES					of D	od re
Sample Matrix Code	4AE				Units	Limit of Detection	Method ref
Endosulphan Sulphate _A	<0.01				mg/kg	0.01	A-T-056
p,p-DDT (4,4) _A	<0.01				mg/kg	0.01	A-T-056
o,p-Methoxychlor _A	<0.01				mg/kg	0.01	A-T-056
p,p-Methoxychlor _A	<0.01				mg/kg	0.01	A-T-056
Permethrin I (cis)A	<0.01				mg/kg	0.01	A-T-056
Permethrin II (trans) _A	<0.01				mg/kg	0.01	A-T-056
DichlorvosA	<0.01				mg/kg	0.01	A-T-056
Mevinphos _A	<0.01				mg/kg	0.01	A-T-056
Demeton-S _A	<0.50				mg/kg	0.5	A-T-056
Demeton-O _A	<0.50				mg/kg	0.5	A-T-056
Phorate _A	<0.01				mg/kg	0.01	A-T-056
Dimethoate _A	<0.01				mg/kg	0.01	A-T-056
Propetamphos _A	<0.01				mg/kg	0.01	A-T-056
Diazinon (Dimpylate) _A	<0.01				mg/kg	0.01	A-T-056
Disulfoton _A	<0.10				mg/kg	0.1	A-T-056
Etrimphos _A	<0.01				mg/kg	0.01	A-T-056
Chlorpyrifos-methyl _A	<0.01				mg/kg	0.01	A-T-056
Parathion (Ethyl Parathion) _A	<0.01				mg/kg	0.01	A-T-056
Methyl Parathion _A	<0.01				mg/kg	0.01	A-T-056
Pirimiphos-methyl _A	<0.01				mg/kg	0.01	A-T-056
Fenitrothion _A	<0.01				mg/kg	0.01	A-T-056
Fensulphothion _A	<0.01				mg/kg	0.01	A-T-056
Fenthion _A	<0.01				mg/kg	0.01	A-T-056
Malathion _A	<0.01				mg/kg	0.01	A-T-056
Chlorfenvinphos _A	<0.01				mg/kg	0.01	A-T-056
Chlorpyrifos _A	<0.01				mg/kg	0.01	A-T-056
Trichloronate _A	<0.01				mg/kg	0.01	A-T-056
Prothiofos (Tokuthion) _A	<0.01				mg/kg	0.01	A-T-056
EthionA	<0.01				mg/kg	0.01	A-T-056
Triazophos _A	<0.01				mg/kg	0.01	A-T-056
Sulprofosa	<0.01				mg/kg	0.01	A-T-056
Carbophenothion _A	<0.01				mg/kg	0.01	A-T-056
Phosalone _A	<0.01				mg/kg	0.01	A-T-056
Azinphos-methyl _A	<0.01				mg/kg	0.01	A-T-056
		•					

Lab Sample ID	20/11074/32						
Client Sample No							
Client Sample ID	TP17						
Depth to Top	0.00						
Depth To Bottom	0.30					ion	
Date Sampled	09-Dec-20					Detection	75
Sample Type	Soil - ES				_s	ð	Method ref
Sample Matrix Code	4AE				Units	Limit	Meth
Azinphos-ethyl _A	<0.01				mg/kg	0.01	A-T-056
Coumaphos _A	<0.01				mg/kg	0.01	A-T-056

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected. N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

20/11074

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: RSK Environment Ltd Tonbridge, Anerley Court, Half Moon Lane, Project No:

Hildenborough, Tonbridge, Kent, TN11 9HU

Date Received: 21/12/2020 (am)

Project: Ditton Edge, East Malling **Cool Box Temperatures** (°C): 3.6 - 4=5.1

Clients Project No: 52254

NO DEVIATIONS IDENTIFIED

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/11252

Issue Number: 1 Date: 14 January, 2021

Client: RSK Environment Ltd Tonbridge

Anerley Court, Half Moon Lane, Hildenborough

Tonbridge

Kent

TN11 9HU

Project Manager: Giorgos Tsoutsis/Gus Awoyomi/Svetislav Trajkovski

Project Name: Ditton Edge, East Malling

Project Ref: 52254 Order No: N/A

Date Samples Received:22/12/20Date Instructions Received:24/12/20Date Analysis Completed:14/01/21

Prepared by: Approved by:

Melanie Marshall

Marshall

Laboratory Coordinator

Danielle Brierley Client Manager

						ect iver. 32	_•.			
Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/18	20/11252/23			
Client Sample No										
Client Sample ID	WS1	WS4	WS5	WS8	WS9	WS9	WS12			
Depth to Top	0.50	0.00	0.50	0.00	0.00	0.50	0.5			
Depth To Bottom	0.50	0.30	0.50	0.30	0.30	0.50	0.50		ion	
Date Sampled	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20		etect	4
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	6AE	6AE	6A	6A	5AE	5A	5A	Units	Limit	Meth
% Stones >10mm _A	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2.4	% w/w	0.1	A-T-044
pH _D M#	7.66	6.95	7.24	6.82	6.42	-	7.06	рН	0.01	A-T-031s
Total Organic Carbon _D M#	-	1.13	-	0.72	0.34	-	-	% w/w	0.03	A-T-032s
Arsenic _D ^{M#}	18	12	14	10	8	-	17	mg/kg	1	A-T-024s
Cadmium _D ^{M#}	0.6	0.7	1.1	0.6	0.6	-	1.2	mg/kg	0.5	A-T-024s
Copper _D M#	8	17	4	13	10	-	5	mg/kg	1	A-T-024s
Chromium _D ^{M#}	22	23	25	21	20	-	35	mg/kg	1	A-T-024s
Lead _D ^{M#}	26	49	26	37	14	-	14	mg/kg	1	A-T-024s
Mercury _D	<0.17	<0.17	<0.17	<0.17	<0.17	-	<0.17	mg/kg	0.17	A-T-024s
Nickel _D ^{M#}	17	18	23	16	18	-	29	mg/kg	1	A-T-024s
Selenium _D M#	<1	<1	1	<1	<1	-	<1	mg/kg	1	A-T-024s
Zinc _D ^{M#}	39	48	48	40	35	-	36	mg/kg	5	A-T-024s
TPH total (>C6-C40) _A M#	<10	<10	<10	-	<10	-	<10	mg/kg	10	A-T-007s

						ject Ret: 52				
Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/18	20/11252/23			
Client Sample No										
Client Sample ID	WS1	WS4	WS5	WS8	WS9	WS9	WS12			
Depth to Top	0.50	0.00	0.50	0.00	0.00	0.50	0.5			
Depth To Bottom	0.50	0.30	0.50	0.30	0.30	0.50	0.50		ion	
Date Sampled	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20		etect	_
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	od ref
Sample Matrix Code	6AE	6AE	6A	6A	5AE	5A	5A	Units	Limit	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _D #	-	-	-	NAD	-	-	-			A-T-045
Asbestos ACM - Suitable for Water Absorption Test? _D	-	-	-	N/A	-	-	-			A-T-045
OCP+OPP Combined Pest Suite (incl. Atrazine and Simazine)										
Dichlobenil _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Tecnazene	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Trifluralin _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
alpha-Hexachlorocyclohexane (HCH) _A	-		•	-	-	<0.01	•	mg/kg	0.01	A-T-056
Hexachlorobenzene (HCB) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Simazine _A	-	•	•	-	-	<0.01	•	mg/kg	0.01	A-T-056
Atrazine _A	-	•	•	-	-	<0.01	•	mg/kg	0.01	A-T-056
beta-Hexachlorocyclohexane (HCH) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Quintozene (PCNB) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Chlorothalonil _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
delta-Hexachlorocyclohexane (HCH) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Triallate _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Heptachlor _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Aldrin₄	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Triadimefon _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Telodrin _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Isodrin _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Pendimethalin _A	•	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Heptachlor epoxide _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
trans-Chlordane (Gamma) _A	•	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
o,p-DDE (2,4)A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Endosulphan I (Alpha) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
cis-Chlordane (Alpha) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
p,p-DDE (4,4)A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Dieldrin _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
o,p-DDD (2,4)A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Endrin₄	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056

						ject Kei. 32				
Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/18	20/11252/23			
Client Sample No										
Client Sample ID	WS1	WS4	WS5	WS8	WS9	WS9	WS12			
Depth to Top	0.50	0.00	0.50	0.00	0.00	0.50	0.5			
Depth To Bottom	0.50	0.30	0.50	0.30	0.30	0.50	0.50		ion	
Date Sampled	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20		etect	.
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		of D	od re
Sample Matrix Code	6AE	6AE	6A	6A	5AE	5A	5A	Units	Limit of Detection	Method ref
Endosulphan II (Beta) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
p,p-DDD (4,4) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
o,p-DDT (2,4) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Endrin Aldehyde _A	•	•	-	-	-	<0.01	•	mg/kg	0.01	A-T-056
Endrin Ketone _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Endosulphan Sulphate _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
p,p-DDT (4,4) _A	•	•	-	-	-	<0.01	•	mg/kg	0.01	A-T-056
o,p-Methoxychlor _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
p,p-Methoxychlor _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Permethrin I (cis)A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Permethrin II (trans) _A			-	-	-	<0.01	-	mg/kg	0.01	A-T-056
DichlorvosA	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Mevinphos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Demeton-S _A	-	-	-	-	-	<0.50	-	mg/kg	0.5	A-T-056
Demeton-O _A	-	-	-	-	-	<0.50	-	mg/kg	0.5	A-T-056
Phorate _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Dimethoate _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Propetamphos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Diazinon (Dimpylate) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Disulfoton _A	-	-	-	-	-	<0.10	-	mg/kg	0.1	A-T-056
Etrimphos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Chlorpyrifos-methyl _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Parathion (Ethyl Parathion) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Methyl Parathion _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Pirimiphos-methyl _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Fenitrothion _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Fensulphothion _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Fenthion _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Malathion _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Chlorfenvinphos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Chlorpyrifos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Trichloronate _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Prothiofos (Tokuthion) _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
EthionA	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
		·	i	i		i				

						,001 11011 02				
Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/18	20/11252/23			
Client Sample No										
Client Sample ID	WS1	WS4	WS5	WS8	WS9	WS9	WS12			
Depth to Top	0.50	0.00	0.50	0.00	0.00	0.50	0.5			
Depth To Bottom	0.50	0.30	0.50	0.30	0.30	0.50	0.50		ion	
Date Sampled	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20		Detection	4
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	,	of	Method ref
Sample Matrix Code	6AE	6AE	6A	6A	5AE	5A	5A	Units	Limit	Meth
Triazophos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Sulprofos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Carbophenothion _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Phosalone _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Azinphos-methyl _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Azinphos-ethyl _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056
Coumaphos _A	-	-	-	-	-	<0.01	-	mg/kg	0.01	A-T-056

					Chefit 1 10	ect Ret: 52	234			
Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/18	20/11252/23			
Client Sample No										
Client Sample ID	WS1	WS4	WS5	WS8	WS9	WS9	WS12			
Depth to Top	0.50	0.00	0.50	0.00	0.00	0.50	0.5			
Depth To Bottom	0.50	0.30	0.50	0.30	0.30	0.50	0.50		ion	
Date Sampled	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20		Limit of Detection	*
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	10	t of D	Method ref
Sample Matrix Code	6AE	6AE	6A	6A	5AE	5A	5A	Units	Limi	Meth
PAH-16MS										
Acenaphthene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	-	-	<0.01	mg/kg	0.01	A-T-019s
Acenaphthylene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	-	-	<0.01	mg/kg	0.01	A-T-019s
Anthracene _A ^{M#}	<0.02	<0.02	<0.02	<0.02	-	•	<0.02	mg/kg	0.02	A-T-019s
Benzo(a)anthracene ^{M#}	<0.04	0.08	<0.04	<0.04	-	•	<0.04	mg/kg	0.04	A-T-019s
Benzo(a)pyrene _A ^{M#}	<0.04	0.08	<0.04	<0.04	-	-	<0.04	mg/kg	0.04	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	<0.05	0.09	<0.05	<0.05	-	-	<0.05	mg/kg	0.05	A-T-019s
Benzo(ghi)perylene _A ^{M#}	<0.05	<0.05	<0.05	<0.05	-	-	<0.05	mg/kg	0.05	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	<0.07	<0.07	<0.07	<0.07	-	-	<0.07	mg/kg	0.07	A-T-019s
Chrysene _A M#	<0.06	0.11	<0.06	<0.06	-	-	<0.06	mg/kg	0.06	A-T-019s
Dibenzo(ah)anthracene _A M#	<0.04	<0.04	<0.04	<0.04	-	-	<0.04	mg/kg	0.04	A-T-019s
Fluoranthene _A ^{M#}	<0.08	0.15	<0.08	<0.08	-	-	<0.08	mg/kg	0.08	A-T-019s
Fluorene _A ^{M#}	<0.01	<0.01	<0.01	<0.01	-	-	<0.01	mg/kg	0.01	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	<0.03	0.05	<0.03	<0.03	-	-	<0.03	mg/kg	0.03	A-T-019s
Naphthalene A ^{M#}	<0.03	<0.03	<0.03	<0.03	-	-	<0.03	mg/kg	0.03	A-T-019s
Phenanthrene _A ^{M#}	<0.03	0.05	0.05	<0.03	-	-	<0.03	mg/kg	0.03	A-T-019s
Pyrene _A ^{M#}	<0.07	0.14	<0.07	<0.07	-	-	<0.07	mg/kg	0.07	A-T-019s
Total PAH-16MS _A ^{M#}	<0.08	0.75	<0.08	<0.08	-	-	<0.08	mg/kg	0.01	A-T-019s

					Onem i rej	ect Ret: 52				
Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/18	20/11252/23			
Client Sample No										
Client Sample ID	WS1	WS4	WS5	WS8	WS9	WS9	WS12			
Depth to Top	0.50	0.00	0.50	0.00	0.00	0.50	0.5			
Depth To Bottom	0.50	0.30	0.50	0.30	0.30	0.50	0.50		u O	
Date Sampled	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20	17-Dec-20		ecti	Į
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES	Soil - ES		Limit of Detection	Method ref
Sample Matrix Code	6AE	6AE	6A	6A	5AE	5A	5A	Units	Limit	Meth
TPH CWG										
Ali >C5-C6 _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Ali >C6-C8 _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Ali >C8-C10 _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C10-C12AM#	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C12-C16 _A M#	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C16-C21AM#	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Ali >C21-C35AM#	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Total Aliphatics _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C5-C7 _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Aro >C7-C8 _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
Aro >C8-C10A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C10-C12 _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C12-C16 _A	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C16-C21 _A M#	-	-	-	<1	-	-	-	mg/kg	1	A-T-055s
Aro >C21-C35 _A ^{M#}	-	-	-	2	-	-	-	mg/kg	1	A-T-055s
Total Aromatics _A	-	-	-	2	-	-	-	mg/kg	1	A-T-055s
TPH (Ali & Aro >C5-C35)A	-	-	-	2	-	-		mg/kg	1	A-T-055s
BTEX - Benzene _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
BTEX - Toluene _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
BTEX - Ethyl Benzene _A #	-	-	-	<0.01	-	-		mg/kg	0.01	A-T-022s
BTEX - m & p Xylene _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s
BTEX - o Xylene _A #	-	-	-	<0.01	-	-		mg/kg	0.01	A-T-022s
MTBE _A #	-	-	-	<0.01	-	-	-	mg/kg	0.01	A-T-022s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

20/11252

24/12/2020 (am)

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR email. ask@envlab.co.uk Tel. 0161 368 4921

Client: RSK Environment Ltd Tonbridge, Anerley Court, Half Moon Lane,

Hildenborough, Tonbridge, Kent, TN11 9HU

Project:

Clients Project No: 52

Ditton Edge, East Malling	Cool Box Temperatures (°C): 7.4, 6.9
52254	

Project No:

Date Received:

Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/23
Client Sample No						
Client Sample ID/Depth	WS1 0.50- 0.50m	WS4 0.00- 0.30m	WS5 0.50- 0.50m	WS8 0.00- 0.30m	WS9 0.00- 0.30m	WS12 0.5- 0.50m
Date Sampled	17/12/20	17/12/20	17/12/20	17/12/20	17/12/20	17/12/20
Deviation Code						
F	✓	✓	✓	✓	✓	✓

Key

Maximum holding time exceeded between sampling date and analysis for analytes listed below

HOLDING TIME EXCEEDANCES

Lab Sample ID	20/11252/2	20/11252/7	20/11252/10	20/11252/15	20/11252/17	20/11252/23
Client Sample No						
Client Sample ID/Depth	WS1 0.50- 0.50m	WS4 0.00- 0.30m	WS5 0.50- 0.50m	WS8 0.00- 0.30m	WS9 0.00- 0.30m	WS12 0.5- 0.50m
Date Sampled	17/12/20	17/12/20	17/12/20	17/12/20	17/12/20	17/12/20
TPH total (>C6-C40)	✓	✓	✓		✓	✓
PAH-16MS	✓	✓	✓	✓		✓
VPHCWG				✓		

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

APPENDIX K LABORATORY CERTIFICATES FOR GEOTECHNICAL ANALYSIS

STRUCTURAL SOILS LTD TEST REPORT

Report No. 584411-01 (00) 177

Date 26-January-2021 Contract Ditton Edge, East Malling

Client RSK

Address Anerley Court

Half Moon Lane Hildenborough Tonbridge TN11 9HU

For the Attention of Svetislav Trakovksi

Samples submitted by client 15-December-2020 Client Reference

Testing Started 16-December-2020 Client Order No. n/a
Testing Completed 22-January-2021 Instruction Type Written

Tests marked 'Not UKAS Accredited' in this report are not included in the UKAS Accreditation Schedule for our Laboratory.

UKAS Accredited Tests

1.01 Moisture Content (oven drying method) BS1377:Part 2:1990:clause 3.2 (superseded)*

1.03 Liquid Limit (one point method) & Plastic Limit BS1377:Part 2:1990,clause 4.4/5.3 (superseded)*

52254

1.10 Particle Size Distribution wet sieve method BS1377:Part 2:1990,clause 9.2 (superseded)*

1.13a Particle Size Distribution sedimentation pipette method BS1377:Part 2:

1990,clause 9.4 (superseded)*

Undertaken by a sub-contractor

2.07 pH value in accordance with BRE Special Digest 1:2005

2.04 Sulphate content (water extract) in accordance with BRE Special Digest 1:2005

Please Note: Remaining samples will be retained for a period of one month from today and will then be disposed of .

Test were undertaken on samples 'as received' unless otherwise stated.

Opinions and interpretations expressed in this report are outside the scope of accreditation for this laboratory.

Structural Soils Ltd 18 Frogmore Rd Hemel Hempstead HP3 9RT Tel.01442 416661 e-mail dimitris.xirouchakis@soils.co.uk

^{*} This clause of BS1377 is no longer the most up to date method due to the publication of ISO17892

GINT_LIBRARY_V10_01.GLB LibVersion: v8_07_001 PrjVersion: v8_07 | GrfcText L - LAB VER.HCATION REPORT - V02 - A4P | 584411-DITTON-EDGE-EAST-MAILLING-RSK-52254.GPJ - v10_01 | 26071/21 - 1643 | SG1 |

TESTING VERIFICATION CERTIFICATE

1774

The test results included in this report are certified as:-

ISSUE STATUS: FINAL

In accordance with the Structural Soils Ltd Laboratory Quality Management System, results sheets and summaries of results issued by the laboratory are checked by an approved signatory. The integrity of the test data and results are ensured by control of the computer system employed by the laboratory as part of the Software Verification Program as detailed in the Laboratory Quality Manual.

This testing verification certificate covers all testing compiled on or before the following datetime: **26/01/2021 16:43:25**.

Testing reported after this date is not covered by this Verification Certificate.

56

Approved Signatory

Sharon Cairns (Laboratory Manager)

(Head Office)
Bristol Laboratory
Unit 1A, Princess Street
Bedminster
Bristol
BS3 4AG

Castleford Laboratory
The Potteries, Pottery Street
Castleford
West Yorkshire
WF10 1NJ

Hemel Laboratory 18 Frogmore Road Hemel Hempstead Hertfordshire HP3 9RT Tonbridge Laboratory
Anerley Court, Half Moon Lane
Hildenborough
Tonbridge
TN11 9HU

STRUCTURAL SOILS LTD

Contract:

Job No:

Ditton Edge, East Mailling

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425 µ m	Description of Sample
	В	1.40	16	37	19	18	53	Orangish brown mottled grey gravelly very sandy CLAY
	В	0.80	11	34	22	12	36	Orangish brown clayey very gravelly SAND
	D	0.80	18	36	18	18	80	Dark orangish brown slightly gravelly sandy CLAY
	D	0.80	20	49	24	25	72	Dark orangish brown slightly gravelly sandy CLAY
	D	0.80	16	26	20	6	70	Orangish brown slightly gravelly clayey SAND
	D	0.80	17	35	18	17	67	Dark orangish brown slightly gravelly sandy CLAY
	D	0.80	16	27	16	11	79	Orangish brown slightly gravelly clayey SAND
	D	0.80	16	23	22	1	78	Orangish brown slightly gravelly clayey SAND
	Sample Ref	B B D D D D D	B 1.40 B 0.80 D 0.80 D 0.80 D 0.80 D 0.80	Sample Ref Sample Type Depth (m) Content % B 1.40 16 B 0.80 11 D 0.80 18 D 0.80 20 D 0.80 16 D 0.80 17 D 0.80 16	Sample Ref Sample Type Depth (m) Content % Limit % B 1.40 16 37 B 0.80 11 34 D 0.80 18 36 D 0.80 20 49 D 0.80 16 26 D 0.80 17 35 D 0.80 16 27	Sample Ref Sample Type Depth (m) Content (m) Limit % Limit % B 1.40 16 37 19 B 0.80 11 34 22 D 0.80 18 36 18 D 0.80 20 49 24 D 0.80 16 26 20 D 0.80 17 35 18 D 0.80 16 27 16	Sample Ref Sample Type Depth (m) Content % Limit % Limit % Index B 1.40 16 37 19 18 B 0.80 11 34 22 12 D 0.80 18 36 18 18 D 0.80 20 49 24 25 D 0.80 16 26 20 6 D 0.80 17 35 18 17 D 0.80 16 27 16 11	Sample Ref Sample Type Depth (m) Content (m) Limit % Limit % Limit % Limit % Index / 425μm % 425μm B 1.40 16 37 19 18 53 B 0.80 11 34 22 12 36 D 0.80 18 36 18 18 80 D 0.80 20 49 24 25 72 D 0.80 16 26 20 6 70 D 0.80 17 35 18 17 67 D 0.80 16 27 16 11 79

	STRUCTURAL SOILS LTD
--	-------------------------

Contract: Contract Ref:

Ditton Edge, East Mailling

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425 µ m	Description of Sample
TP14		В	1.30	22	52	25	27	79	Dark brown mottled orange gravelly sandy CLAY
TP16		D	0.80	16	NP	NP	NP	80	Orangish brown slightly gravelly clayey SAND
WS1		D	1.50	24	47	24	23	100	Orangish brown slightly gravelly sandy CLAY
WS3		D	0.80	12	31	17	14	56	Orangish brown gravelly sandy CLAY
WS4		D	0.80	14	34	18	16	55	Brown mottled orange slightly gravelly sandy CLAY
WS6		D	1.20	20	53	30	23	67	Orangish brown mottled dark brown slightly gravelly sandy CLAY
WS8		D	0.80	15	42	20	22	55	Brown mottled orange slightly gravelly sandy CLAY
WS11		D	0.80	12	37	28	9	30	Orangish brown sandy very gravelly CLAY

	STRUCTURAL SOILS LTD
--	-------------------------

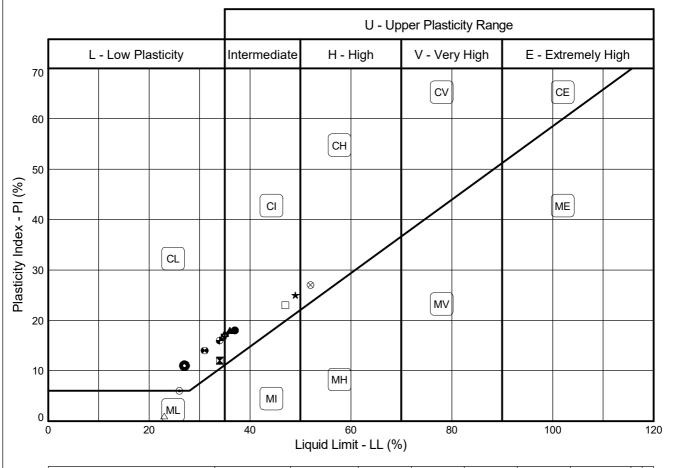
Contract: Contract Ref:

Ditton Edge, East Mailling

SUMMARY OF SOIL CLASSIFICATION TESTS

In accordance with clauses 3.2,4.3,4.4,5.3,5.4,7.2,8.2,8.3 of BS1377:Part 2:1990

Exploratory Position ID	Sample Ref	Sample Type	Depth (m)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity Index	% <425 μ m	Description of Sample
WS12		D	0.80	18	NP	NP	NP	77	Orangish brown slightly gravelly sandy CLAY


	STRUCTURAL SOILS LTD
--	-------------------------

Contract: Contract Ref:

Ditton Edge, East Mailling

PLASTICITY CHART - PI Vs LL In accordance with BS5930:2015 Testing in accordance with BS1377-2:1990

	Sample Identification		BS Test Preparation		МС	LL	PL	PI	<425 µ m	cation	
	Exploratory Position ID	Sample	Depth (m)	Method #	Method +	%	%	%	%	%	Lab location Notes
	TP1	В	1.40	3.2/4.4/5.3/5.4	4.2.4	16	37	19	18	53	T
	TP2	В	0.80	3.2/4.4/5.3/5.4	4.2.4	11	34	22	12	36	Т
lack	TP5	D	0.80	3.2/4.4/5.3/5.4	4.2.4	18	36	18	18	80	T
*	TP6	D	0.80	3.2/4.4/5.3/5.4	4.2.4	20	49	24	25	72	T
•	TP8	D	0.80	3.2/4.4/5.3/5.4	4.2.4	16	26	20	6	70	T
O	TP9	D	0.80	3.2/4.4/5.3/5.4	4.2.4	17	35	18	17	67	Т
0	TP11	D	0.80	3.2/4.4/5.3/5.4	4.2.4	16	27	16	11	79	T
Δ	TP13	D	0.80	3.2/4.4/5.3/5.4	4.2.4	16	23	22	1	78	T
\otimes	TP14	В	1.30	3.2/4.4/5.3/5.4	4.2.4	22	52	25	27	79	T
	TP16	D	0.80	3.2/4.4/5.3/5.4	4.2.4	16	NP	NP	NP	80	Т
	WS1	D	1.50	3.2/4.4/5.3/5.4	4.2.3	24	47	24	23	100	Т
0	WS3	D	0.80	3.2/4.4/5.3/5.4	4.2.4	12	31	17	14	56	T
•	WS4	D	0.80	3.2/4.4/5.3/5.4	4.2.4	14	34	18	16	55	T

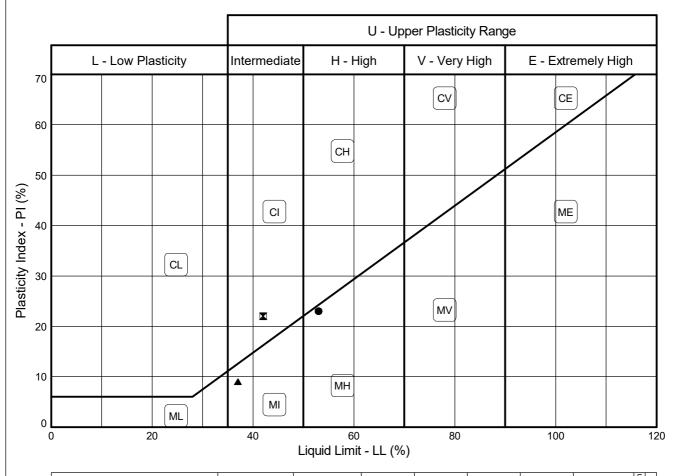
Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method
- 4.6 One Point Casagrande Method
- 5.3 Plastic Limit Method 5.4 Plasticity Index

- + Tested in accordance with the following clauses of BS1377-2:1990.
- 4.2.3 Natural State
- 4.2.4 Wet Sieved

Key: * = Non-standard test, NP = Non plastic.

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)


STRUCTURAL SOILS **Anerley Court** Half Moon Lane Hildenborough Tonbridge TN11 9HU

Compiled By				
Francesca	Bennett	FRANCESCA BENNETT	26/01/21	
Contract		Contract Ref		

Ditton Edge, East Mailling

PLASTICITY CHART - PI Vs LL In accordance with BS5930:2015 Testing in accordance with BS1377-2:1990

	Sample Identification			BS Test Preparation		MC	LL	PL	PI	<425 µ m	cation
	Exploratory Position ID	Sample	Depth (m)	Method #	Method +	%	%	%	%	%	Lab location Notes
•	WS6	D	1.20	3.2/4.4/5.3/5.4	4.2.4	20	53	30	23	67	T
	WS8	D	0.80	3.2/4.4/5.3/5.4	4.2.4	15	42	20	22	55	Т
	WS11	D	0.80	3.2/4.4/5.3/5.4	4.2.3	12	37	28	9	30	Т
	WS12	D	0.80	3.2/4.4/5.3/5.4	4.2.4	18	NP	NP	NP	77	Т

Tested in accordance with the following clauses of BS1377-2:1990.

- 3.2 Moisture Content
- 4.3 Cone Penetrometer Method
- 4.4 One Point Cone Penetrometer Method 4.6 - One Point Casagrande Method
- 5.3 Plastic Limit Method 5.4 Plasticity Index

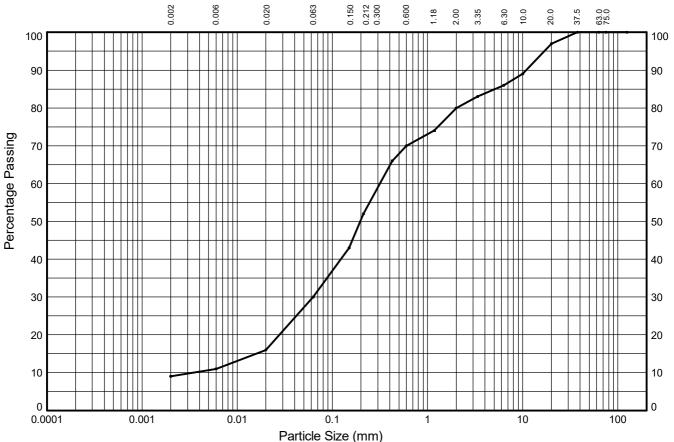
- + Tested in accordance with the following clauses of BS1377-2:1990.
- 4.2.3 Natural State
- 4.2.4 Wet Sieved

Key: * = Non-standard test, NP = Non plastic.

Lab location: B = Bristol (BS3 4AG), C = Castleford (WF10 1NJ), H = Hemel Hempstead (HP3 9RT), T = Tonbridge (TN11 9HU)

STRUCTURAL SOILS **Anerley Court** Half Moon Lane Hildenborough Tonbridge TN11 9HU

Compiled By					
Francesca	Bennett	F	RANCESCA BENNETT	26/01/21	
Contract			Contract Ref:	•	


Ditton Edge, East Mailling

PARTICLE SIZE DISTRIBUTION TEST

In accordance with clauses 9.2, 9.4 of BS1377:Part 2:1990

Trial Pit: **TP3** Sample Ref: Sample Type: **B** Depth (m): **1.10**

				(,					
	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	
CLAY	2%	5%	14%	20%	20%	10%	6%	11%	3%	COBBLES
		SILT			SAND			GRAVEL	_	
9%		21%			50%			20%		0%

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 97 89 86 83 80 74 70 66 52 43

Particle Diameter (mm)	Percent Passing (%)				
0.02	16				
0.006	11				
0.002	9				
Sedimentation sample was not pre-treated					

Coeff	icients
D ₁₀ (mm)	0.003
D ₁₅ (mm)	0.016
D ₃₀ (mm)	0.063
D ₅₀ (mm)	0.196
D ₆₀ (mm)	0.315
D ₈₅ (mm)	5.104
D ₉₀ (mm)	10.905
C _U	91
C _C	4
•	

Soil Description:

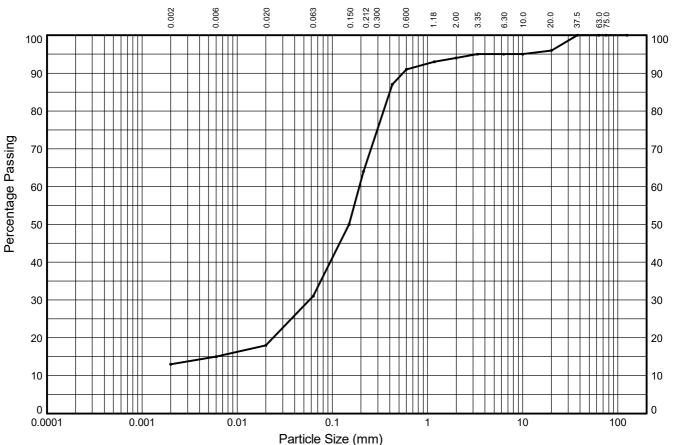
Orangish brown clayey gravelly very silty SAND

Key: C_U = Uniformity coefficient. C_C = Coefficient of curvature as defined in BS EN ISO 14688-2

STRUCTURAL SOILS Anerley Court Half Moon Lane Hildenborough Tonbridge TN11 9HU

Comp	iled By	Date
S. Rues	DAISY RICHARDS	26/01/21
Contract	Contract Ref:	

Ditton Edge, East Mailling


584411

AGS

PARTICLE SIZE DISTRIBUTION TEST

In accordance with clauses 9.2, 9.4 of BS1377:Part 2:1990

Trial Pit: **TP7** Sample Ref: Sample Type: **D** Depth (m): **1.50**

				`	,					
	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	
CLAY	2%	3%	13%	30%	30%	3%	1%	1%	4%	COBBLES
	SILT			SAND		GRAVEL				
13%	18%		63%		6%			0%		

Test Sieve (mm)	Percent Passing (%)
125.0 75.0 63.0 37.5 20.0 10.0 6.30 3.35 2.00 1.18 0.600 0.425 0.212 0.150 0.063	100 100 100 100 96 95 95 95 94 93 91 87 64 50

	Particle Diameter (mm)	Percent Passing (%)					
	0.02	18					
	0.006	15					
	0.002	13					
	Sedimentation sample was not pre-treated						
_							

Coeff	Coefficients						
D ₁₀ (mm)	NA						
D ₁₅ (mm)	0.006						
D ₃₀ (mm)	0.058						
D ₅₀ (mm)	0.150						
D ₆₀ (mm)	0.192						
D ₈₅ (mm)	0.400						
D ₉₀ (mm)	0.550						
C _U	NA						
C _c	NA						

Soil Description:

Orangish brown gravelly clayey silty SAND

Key: C_U = Uniformity coefficient. C_C = Coefficient of curvature as defined in BS EN ISO 14688-2

STRUCTURAL SOILS
Anerley Court
Half Moon Lane
Hildenborough
Tonbridge TN11 9HU

Compiled By			
S. Rues	DAISY RICHARDS	26/01/21	
Contract	Contract Ref:		

Ditton Edge, East Mailling

584411

AGS

Percentage Passing

0.0001

PARTICLE SIZE DISTRIBUTION TEST

In accordance with clauses 9.2, 9.4 of BS1377:Part 2:1990

Trial Pit: TP10 Sample Ref: Sample Type: Depth (m): 0.80 0.212 0.002 900.0 0.150 0.020 0.063 0.600 63.0 75.0 1.18 37.5 2.00 6.30 10.0 100 100 90 90 80 80 70 70 60 60 50 50 40 40 30 30 20 20 10 10 n

Particle Size (mm)										
	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	
CLAY	3%	1%	9%	28%	33%	5%	1%	5%	3%	COBBLES
	SILT		SAND		GRAVEL					
12%		13%			66%			9%		0%

0.1

Test Sieve (mm)	Percent Passing (%)
125.0	100
75.0	100
63.0	100
37.5	100
20.0	97
10.0	93
6.30	92
3.35	92
2.00	91
1.18	89
0.600	86
0.425	81
0.212	56
0.150	41
0.063	25

0.001

0.01

Particle Diameter	Darsant Dassins					
(mm)	Percent Passing (%)					
(11111)	(70)					
0.02	16					
0.02	10					
0.006	15					
0.000						
0.002	12					
Sedimentation sample was not						
pre-treated						

Coeffic	Coefficients						
D ₁₀ (mm)	NA						
D ₁₅ (mm)	0.006						
D ₃₀ (mm)	0.083						
D ₅₀ (mm)	0.185						
D ₆₀ (mm)	0.237						
D ₈₅ (mm)	0.560						
D ₉₀ (mm)	1.536						
C _U	NA						
C _c	NA						
	·						

10

100

Soil Description:

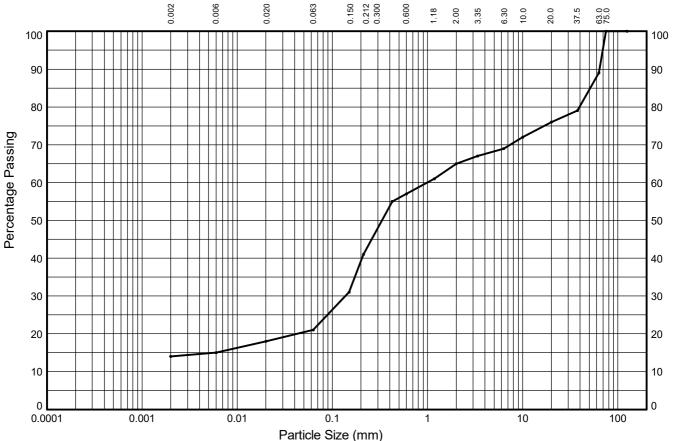
Orangish brown gravelly clayey silty SAND

Key: C_U = Uniformity coefficient. C_C = Coefficient of curvature as defined in BS EN ISO 14688-2

STRUCTURAL SOILS
Anerley Court
Half Moon Lane
Hildenborough
Tonbridge TN11 9HU

Compiled By			
S. Rues	DAISY RICHARDS	26/01/21	
Contract	Contract Ref:		

Ditton Edge, East Mailling


584411

AGS

PARTICLE SIZE DISTRIBUTION TEST

In accordance with clauses 9.2, 9.4 of BS1377:Part 2:1990 NON-STANDARD TEST

Window Sample: **WS9** Sample Ref: Sample Type: **B** Depth (m): **1.00**

				`	,					
	fine	medium	coarse	fine	medium	coarse	fine	medium	coarse	
CLAY	1%	3%	3%	18%	18%	8%	4%	7%	13%	COBBLES
	SILT			SAND		GRAVEL				
14%	7%		44%			24%		11%		

Test Sieve (mm)	Percent Passing (%)
125.0	100
75.0	100
63.0	89
37.5	79
20.0	76
10.0	72
6.30	69
3.35	67
2.00	65
1.18	61
0.600	57
0.425	55
0.212	41
0.150	31
0.063	21

Particle Diameter (mm)	Percent Passing (%)							
0.02	18							
0.006	15							
0.002	14							
Sedimentation sample was not pre-treated								

Coeff	Coefficients									
D ₁₀ (mm)	NA									
D ₁₅ (mm)	0.006									
D ₃₀ (mm)	0.138									
D ₅₀ (mm)	0.332									
D ₆₀ (mm)	0.996									
D ₈₅ (mm)	51.194									
D ₉₀ (mm)	64.007									
C _U	NA									
$C_{\rm c}$	NA									
C _C										

Soil Description:

Brown mottled orangish brown silty clayey very gravelly SAND with low cobble content

Key: C_U = Uniformity coefficient. C_C = Coefficient of curvature as defined in BS EN ISO 14688-2

STRUCTURAL SOILS Anerley Court Half Moon Lane Hildenborough Tonbridge TN11 9HU

Compiled By						
S. Rues	DAISY RICHARDS	26/01/21				
Contract Contract Ref:						

Ditton Edge, East Mailling

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 20/11054

Issue Number: 1 **Date:** 23 December, 2020

Client: Structural Soils Limited (Tonbridge Lab)

Anerley Court Half Moon Lane Hildenborough

Kent UK

TN119HU

Project Manager: Richard Ashby

Project Name: Ditton Edge, East Malling

Project Ref: 52254
Order No: N/A

Date Samples Received: 18/12/20
Date Instructions Received: 18/12/20
Date Analysis Completed: 22/12/20

Prepared by: Approved by:

Sophie France Holly Neary-King

Client Service Manager Client Services Supervisor

						,				
Lab Sample ID	20/11054/1	20/11054/2	20/11054/3	20/11054/4	20/11054/5	20/11054/6	20/11054/7			
Client Sample No	1	1	2	1	3	2	1			
Client Sample ID	TP1	TP4	TP6	TP8	TP11	TP13	TP15			
Depth to Top	0.80	0.80	1.50	0.80	1.40	1.40	1.00			
Depth To Bottom	1.10	1.10	1.80	1.10	1.80		1.30		ion	
Date Sampled									Detection	4 .
Sample Type	Soil - B	Soil - B	Soil - B	Soil - D	Soil - B	Soil - D	Soil - D	,,		Method ref
Sample Matrix Code	5A	4A	4A	5A	4A	4A	6A	Units	Limit of	Meth
% Stones >10mm _A	2.2	4.5	6.4	15.1	6.8	17.0	<0.1	% w/w	0.1	A-T-044
pH BRE _D M#	8.12	8.01	8.55	7.35	8.71	7.67	7.69	pН	0.01	A-T-031s
Sulphate BRE (water sol 2:1)pM#	32	<10	<10	<10	<10	<10	<10	mg/l	10	A-T-026s

				,001 11011 02			
Lab Sample ID	20/11054/8						
Client Sample No	2						
Client Sample ID	TP17						
Depth to Top	1.50						
Depth To Bottom	1.80				_ E		
Date Sampled						Detection	*
Sample Type	Soil - D						Method ref
Sample Matrix Code	4A				Units	Limit of	Meth
% Stones >10mm _A	11.8				% w/w	0.1	A-T-044
pH BRE _D ^{M#}	8.80				рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D M#	<10				mg/l	10	A-T-026s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected. N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

20/11054

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: Structural Soils Limited (Tonbridge Lab), Anerley Court, Half Moon Lane, **Project No:**

didetaria sons Eminted (Tonoridge Lab), Americy Court, Hari Woon Lane

Hildenborough, Kent, UK, TN11 9HU

Project: Ditton Edge, East Malling

Clients Project No: 52254

,	J	
	Date Received:	18/12/2020 (am)
	Cool Box Temperatures (°C):	11.8

Lab Sample ID	20/11054/1	20/11054/2	20/11054/3	20/11054/4	20/11054/5	20/11054/6	20/11054/7	20/11054/8
Client Sample No	1	1	2	1	3	2	1	2
Client Sample ID/Depth	TP1 0.80- 1.10m	TP4 0.80- 1.10m	TP6 1.50- 1.80m	TP8 0.80- 1.10m	TP11 1.40- 1.80m	TP13 1.40m	TP15 1.00- 1.30m	TP17 1.50- 1.80m
Date Sampled								
Deviation Code								
E (no date)	√	✓	✓	✓	✓	✓	✓	✓

Key

E (no date)

No sampling date provided (all results affected if not provided)

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 21/00150

Issue Number: 1 **Date:** 14 January, 2021

Client: Structural Soils Limited (Tonbridge Lab)

Anerley Court Half Moon Lane Hildenborough

Kent UK

TN11 9HU

Project Manager: Richard Ashby

Project Name: Ditton Edge, East Malling

Project Ref: 52254
Order No: N/A
Date Samples Received: 08/01/21

Date Instructions Received: 08/01/21 **Date Analysis Completed:** 14/01/21

Prepared by: Approved by:

Melanie Marshall Laboratory Coordinator

Richard Wong Client Manager

Lab Sample ID	21/00150/1	21/00150/2	21/00150/3	21/00150/4				
Client Sample No	1	2	2	1				
Client Sample ID	WS2	WS5	WS7	WS10				
Depth to Top	0.80	1.20	1.20	0.80				
Depth To Bottom	1.10	1.60	1.40	1.10			ion	
Date Sampled							Detection	*
Sample Type	Soil - D	Soil - D	Soil - D	Soil - D			5	Method ref
Sample Matrix Code	6AE	5A	4A	5A		Units	Limit	Meth
% Stones >10mm _A	1.5	<0.1	<0.1	4.4		% w/w	0.1	A-T-044
pH BRE _D ^{M#}	7.32	7.97	8.30	7.38		рН	0.01	A-T-031s
Sulphate BRE (water sol 2:1) _D M#	<10	<10	<10	<10		mg/l	10	A-T-026s

REPORT NOTES

General

This report shall not be reproduced, except in full, without written approval from Envirolab.

The results reported herein relate only to the material supplied to the laboratory.

The residue of any samples contained within this report, and any received with the same delivery, will be disposed of six weeks after initial scheduling. For samples tested for Asbestos we will retain a portion of the dried sample for a minimum of six months after the initial Asbestos testing is completed.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

The Client Sample No, Client Sample ID, Depth to Top, Depth to Bottom and Date Sampled were all provided by the client.

Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900μS/cm @ 25°C / 11550μS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected. N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Envirolab Deviating Samples Report

Units 7&8 Sandpits Business Park, Mottram Road, Hyde, SK14 3AR Tel. 0161 368 4921 email. ask@envlab.co.uk

Client: Structural Soils Limited (Tonbridge Lab), Anerley Court, Half Moon Lane,

Hildenborough, Kent, UK, TN11 9HU

Project: Ditton Edge, East Malling

Clients Project No: 52254

Project No:	21/00150
Date Received:	08/01/2021 (am)

Cool Box Temperatures (°C): 0.1

Lab Sample ID	21/00150/1	21/00150/2	21/00150/3	21/00150/4
Client Sample No	1	2	2	1
Client Sample ID/Depth	WS2 0.80- 1.10m	WS5 1.20- 1.60m	WS7 1.20- 1.40m	WS10 0.80- 1.10m
Date Sampled				
Deviation Code				
E (no date)	✓	✓	✓	✓

Key

E (no date)

No sampling date provided (all results affected if not provided)

If, at any point before reaching the laboratory, the temperature of the samples has breached those set in published standards, e.g. BS-EN 5667-3, ISO 18400-102:2017, then the concentration of any affected analytes may differ from that at the time of sampling.

APPENDIX L GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH

Generic assessment criteria for human health: residential scenario with home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the C4SL exposure modifications, with the exception of the "top two" produce type approach taken in the C4SL, have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) for residential land use, reducing exposure frequency for dermal contact outdoors for residential land use, and updated produce type consumption rates (90th percentile) based on recent data from the National Diet and Nutrition Survey.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential with home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential with home-grown produce scenario are

direct soil and dust ingestion

- consumption of home-grown produce
- consumption of soil attached to home-grown produce
- · dermal contact with soil and indoor dust
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are

at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for 1,2,4-trimethylbenzene, barium and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene (>EC5-EC7) and toluene (>EC7-EC8), which are modelled separately.

Physical parameters

For the residential with home-grown produce scenario, the CLEA default building is a small, two-storey terrace house with a concrete ground-bearing slab. The house is assumed to have a 100m^2 private garden consisting of lawn and flowerbeds, incorporating a 20m^2 plot for growing fruit and vegetables consumed by the residents. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential with homegrown produce land-use scenario

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in SR3⁽⁵⁾. Modifications to the default SR3⁽⁵⁾ exposure scenarios based on the C4SL exposure scenarios⁽³⁾ are presented in Tables 2 and 3 below.

The final selected GAC are presented by pathway in Table 4 and the combined GAC in Table 5.

Figure 1: Conceptual model for residential scenario with home-grown produce

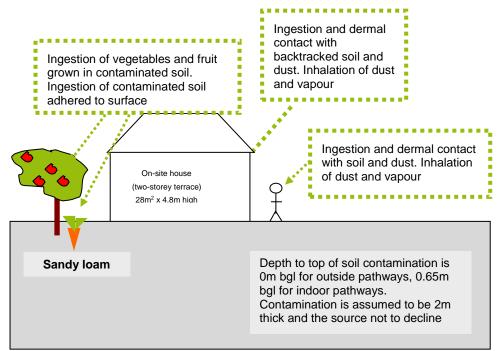


Table 1: Exposure assessment parameters for residential scenario with home-grown produce – inputs for CLEA model

Parameter	Value	Justification				
Land use	Residential with homegrown produce	Chosen land use				
Receptor	Female child age 1 to 6	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾				
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3. Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾				
Soil type	Sandy Loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾				
Start AC (age class)	1	Range of age classes corresponding to key generic assumption that the				
End AC (age class)	6	critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾				
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents'(13)				
	1	To provide SAC for sites where				
	2.5	SOM <6% as often observed by RSK				
рН	7	Model default				

Table 2: Residential with home-grown produce - modified home-grown produce data

Name			າ rate 9 day⁻¹) bງ			(g	Dry weight conversion factor (g DW g ⁻¹	Home- grown fraction (average)	Home- grown fraction (high	Soil loading factor (g g ⁻¹ DW)	Preparation correction factor
	1	2	3	4	5	6	FW)	(average)	end)	(9 9 511)	
Green vegetables	7.12	5.87	5.87	5.87	4.53	4.53	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	10.7	2.83	2.83	2.83	2.14	2.14	0.103	0.06	0.4	1.00E-03	1.00E+00
Tuber vegetables	16	6.6	6.6	6.6	4.95	4.95	0.21	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	1.83	3.39	3.39	3.39	2.24	2.24	0.058	0.06	0.4	1.00E-03	6.00E-01
Shrub fruit	2.23	0.46	0.46	0.46	0.19	0.19	0.166	0.09	0.6	1.00E-03	6.00E-01
Tree fruit	fruit 3.82 10.3 10.3 10.3 5.16 5.16		5.16	0.157	0.04	0.27	1.00E-03	6.00E-01			
Justification	Table	3.4, SF	P1010 ⁽³⁾				Table 6.3, SR3 ⁽⁵⁾	Table 4.19, SR3 ⁽⁵⁾ Table 6.3, SR3 ⁽⁵⁾		R3 ⁽⁵⁾	

Table 3: Residential with home-grown produce - modified and use and receptor data

Parameter	Unit	Age class					
		1	2	3	4	5	6
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365
EF (consumption of home-grown produce)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365
EF (skin contact, outdoor)	day yr ⁻¹	170	170	170	170	170	170
EF (inhalation of dust and vapour, indoor)	day yr ⁻¹	365	365	365	365	365	365
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365
Justification		Table 3.5, SP1010 ⁽³⁾ ; Table 3.1, SR3 ⁽⁵⁾					
Soil to skin adherence factor (outdoor)	mg cm ⁻² day ⁻¹	0.1	0.1	0.1	0.1	0.1	0.1
Justification		Table 3.5, SP1010 ⁽³⁾					
Inhalation rate	m ³ day ⁻¹	5.4	8.0	8.9/f	10.1	10.1	10.1
Justification		Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾					

Notes: For **cadmium**, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX $3^{(1)}$, Science Report SC050021/Cadmium SGV $^{(1)}$ and the project report SP1010 $^{(3)}$ for more information.

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for:
 benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium,
 phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation
 of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic,
 cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated
 collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene,
 xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like
 PCBs'. Available at: https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sqvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- 3. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2010), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
- 14. USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. https://www.epa.gov/iris (accessed 9 December 2015)

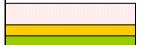
Human Health Generic Assessment Criteria by Pathway for Residential With Home-Grown Produce Scenario

	Notes	SAC Appropriate to Pathway SOM 1% (mg/kg)			Soil Saturation SAC Appropriate to Pathy			M 2.5% (mg/kg)	Soil Saturation	SAC Appropri	Soil Saturation		
Compound	tes	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
		•		•			•	•		•	•	•	, , ,
Metals													
Arsenic	(a,b)	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR
Barium	(b)	1.34E+03	NR	NR	NR	1.34E+03	NR	NR	NR	1.34E+03	NR	NR	NR
Beryllium		1.13E+02	1.72E+00	NR	NR	1.13E+02	1.72E+00	NR	NR	1.13E+02	1.72E+00	NR	NR
Boron		3.00E+02	5.20E+06	NR	NR	3.00E+02	5.20E+06	NR	NR	3.00E+02	5.20E+06	NR	NR
Cadmium	(a)	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR
Chromium (III) - trivalent	(c)	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR
Chromium (VI) - hexavalent	(a,d)	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR
Copper	(-7-7	2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR
_ead	(a)	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR	2.01E+02	NR	NR	NR
Elemental Mercury (Hg ⁰)	(d)	NR	2.35E-01	NR	4.31E+00	NR	5.60E-01	NR	1.07E+01	NR	1.22E+00	NR	2.58E+01
Inorganic Mercury (Hg ²⁺)		3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR	3.95E+01	3.63E+03	3.91E+01	NR
Methyl Mercury (Hg ⁴⁺)		1.26E+01	1.87E+01	7.52E+00	7.33E+01	1.26E+01	3.62E+01	9.34E+00	1.42E+02	1,26E+01	7.68E+01	1.08E+01	3.04E+02
Nickel	(d)	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR	1.27E+02	1.81E+02	NR	NR
Selenium	(b)	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR	2.58E+02	NR	NR	NR
Vanadium	1 \-/	4.13E+02	1.46E+03	NR	NR	4.13E+02	1.46E+03	NR	NR	4.13E+02	1.46E+03	NR	NR
Zinc	(b)	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR	NR
Cyanide (free)		1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR
Volatile Organic Compounds													
Benzene	(a)	2.62E-01	9.01E-01	2.03E-01	1.22E+03	5.39E-01	1.68E+00	4.08E-01	2.26E+03	1.16E+00	3.48E+00	8.72E-01	4.71E+03
Toluene		1.53E+02	9.08E+02	1.31E+02	8.69E+02	3.49E+02	2.00E+03	2.97E+02	1.92E+03	7.95E+02	4.55E+03	6.77E+02	4.36E+03
Ethylbenzene		1.10E+02	8.34E+01	4.74E+01	5.18E+02	2.61E+02	1.96E+02	1.12E+02	1.22E+03	6.00E+02	4.58E+02	2.60E+02	2.84E+03
Xylene - m		2.10E+02	8.25E+01	5.92E+01	6.25E+02	5.01E+02	1.95E+02	1.40E+02	1.47E+03	1.15E+03	4.56E+02	3.27E+02	3.46E+03
Xylene - o		1.92E+02	8.87E+01	6.07E+01	4.78E+02	4.56E+02	2.08E+02	1.43E+02	1.12E+03	1.05E+03	4.86E+02	3.32E+02	2.62E+03
Xylene - p		1.98E+02	7.93E+01	5.66E+01	5.76E+02	4.70E+02	1.86E+02	1.33E+02	1.35E+03	1.08E+03	4.36E+02	3.10E+02	3.17E+03
Total xvlene		1.92E+02	7.93E+01	5.66E+01	6.25E+02	4.56E+02	1.86E+02	1.33E+02	1.47E+03	1.05E+03	4.36E+02	3.10E+02	3.46E+03
Methyl tertiary-Butyl ether (MTBE)		1.54E+02	1.04E+02	6,22E+01	2.04E+04	2.97E+02	1.69E+02	1.08E+02	3.31E+04	6.03E+02	3.21E+02	2.10E+02	6.27E+04
1,1,1,2 Tetrachloroethane		5.39E+00	1.54E+00	1.20E+00	2.60E+03	1.27E+01	3.56E+00	2.78E+00	6.02E+03	2.92E+01	8.29E+00	6.46E+00	1.40E+04
1,1,2,2-Tetrachloroethane		2.81E+00	3.92E+00	1.64E+00	2.67E+03	6.10E+00	8.04E+00	3.47E+00	5.46E+03	1.36E+01	1.76E+01	7.67E+00	1.20E+04
1,1,1-Trichloroethane		3.33E+02	9.01E+00	8.77E+00	1.43E+03	7.26E+02	1.84E+01	1.80E+01	2.92E+03	1.62E+03	4.04E+01	3.94E+01	6.39E+03
1,1,2 Trichloroethane		1.95E+00	1.25E+00	7.62E-01	4.03E+03	4.21E+00	2.55E+00	1.59E+00	8.21E+03	9.35E+00	5.59E+00	3.50E+00	1.80E+04
1,1-Dichloroethene		1.93E+01	3.29E-01	3.23E-01	2.23E+03	3.85E+01	5.82E-01	5.74E-01	3.94E+03	8.15E+01	1.17E+00	1.16E+00	7.94E+03
1,2-Dichloroethane		3.17E-02	9.20E-03	7.13E-03	3.41E+03	5.73E-02	1.33E-02	1.08E-02	4.91E+03	1.09E-01	2.28E-02	1.88E-02	8.43E+03
1,2,4-Trimethylbenzene		NR	1.76E+00	NR	4.74E+02	NR	4.26E+00	NR	1.16E+03	NR	9.72E+00	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
1,2-Dichloropropane		4.28E+00	3.40E-02	3.37E-02	1.19E+03	8.44E+00	6.00E-02	5.96E-02	2.11E+03	1.77E+01	1.21E-01	1.20E-01	4.24E+03
Carbon Tetrachloride (tetrachloromethane)		3.10E+00	2.58E-02	2.57E-02	1.52E+03	7.11E+00	5.65E-02	5.62E-02	3.32E+03	1.62E+01	1.28E-01	1.27E-01	7.54E+03
Chloroethane		NR	1.17E+01	NR	2.61E+03	NR	1.59E+01	NR	3.54E+03	NR	2.57E+01	NR	5.71E+03
Chloromethane		NR	1.17E-02	NR	1.91E+03	NR	1.38E-02	NR	2.24E+03	NR	1.85E-02	NR	2.99E+03
Cis 1,2 Dichloroethene		1.56E-01	NR	NR	3.94E+03	2.66E-01	NR	NR	6.61E+03	5.18E-01	NR	NR	1.29E+04
Dichloromethane		7.04E-01	3.05E+00	6.24E-01	7.27E+03	1.27E+00	4.06E+00	1.08E+00	9.68E+03	2.33E+00	6.42E+00	1.92E+00	1.53E+04
Tetrachloroethene		4.49E+00	1.79E-01	1.76E-01	4.24E+02	1.04E+01	4.02E-01	3.94E-01	9.51E+02	2.38E+01	9.21E-01	9.04E-01	2.18E+03
Trans 1,2 Dichloroethene		6.45E+00	2.76E-01	NR	3.42E+03	1.29E+01	4.99E-01	NR	6.17E+03	2.74E+01	1.02E+00	NR	1.26E+04
Trichloroethene		2.83E-01	1.72E-02	1.62E-02	1.54E+03	6.26E-01	3.59E-02	3.40E-02	3.22E+03	1.41E+00	7.98E-02	7.55E-02	7.14E+03
Vinyl Chloride (chloroethene)		3.82E-03	7.73E-04	6.43E-04	1.36E+03	6.87E-03	1.00E-03	8.73E-04	1.76E+03	1.25E-02	1.53E-03	1.36E-03	2.69E+03
					-				_				
Semi-Volatile Organic Compounds					•								•
2-Chloronaphthalene		2.76E+02	5.39E+00	5.29E+00	1.14E+02	6.59E+02	1.33E+01	1.30E+01	2.80E+02	1.45E+03	3.17E+01	3.10E+01	6.69E+02
Acenaphthene		2.27E+02	4.86E+04	2.26E+02	5.70E+01	5.41E+02	1.18E+05	5.38E+02	1.41E+02	1.18E+03	2.68E+05	1.17E+03	3.36E+02
Acenaphthylene		1.85E+02	4.59E+04	1.84E+02	8.61E+01	4.42E+02	1.11E+05	4.40E+02	2.12E+02	9.78E+02	2.53E+05	9.74E+02	5.06E+02
Anthracene		2.43E+03	1.53E+05	2.39E+03	1.17E+00	5.53E+03	3.77E+05	5.45E+03	2.91E+00	1.10E+04	8.76E+05	1.09E+04	6.96E+00

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

Table 4

Human Health Generic Assessment Criteria by Pathway for Residential With Home-Grown Produce Scenario



	Note	SAC Appropri	iate to Pathway So	OM 1% (mg/kg)	Soil Saturation	SAC Appropri	ate to Pathway SOI	M 2.5% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturation
Compound	les	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Benzo(a)anthracene		1.01E+01	2.47E+01	7.18E+00	1.71E+00	1.42E+01	4.37E+01	1.07E+01	4.28E+00	1.69E+01	6.26E+01	1.33E+01	1.03E+01
Benzo(a)pyrene	(a)	4.96E+00	3.51E+01	NR	9.11E-01	4.96E+00	3.77E+01	NR	2.28E+00	4.96E+00	3.89E+01	NR	5.46E+00
Benzo(b)fluoranthene		2.96E+00	1.93E+01	2.56E+00	1.22E+00	3.89E+00	2.13E+01	3.29E+00	3.04E+00	4.43E+00	2.22E+01	3.69E+00	7.29E+00
Benzo(g,h,i)perylene		3.77E+02	1.87E+03	3.14E+02	1.54E-02	4.09E+02	1.94E+03	3.38E+02	3.85E-02	4.23E+02	1.97E+03	3.48E+02	9.23E-02
Benzo(k)fluoranthene		8.92E+01	5.41E+02	7.66E+01	6.87E-01	1.10E+02	5.76E+02	9.22E+01	1.72E+00	1.21E+02	5.91E+02	1.00E+02	4.12E+00
Chrysene		1.66E+01	1.19E+02	1.46E+01	4.40E-01	2.54E+01	1.49E+02	2.17E+01	1.10E+00	3.19E+01	1.66E+02	2.67E+01	2.64E+00
Dibenzo(a,h)anthracene		2.90E-01	1.45E+00	2.41E-01	3.93E-03	3.43E-01	1.64E+00	2.84E-01	9.82E-03	3.69E-01	1.74E+00	3.04E-01	2.36E-02
Fluoranthene		2.87E+02	3.83E+04	2.85E+02	1.89E+01	5.63E+02	8.87E+04	5.60E+02	4.73E+01	9.00E+02	1.83E+05	8.96E+02	1.13E+02
Fluorene		1.77E+02	6.20E+03	1.72E+02	3.09E+01	4.19E+02	1.53E+04	4.07E+02	7.65E+01	8.98E+02	3.62E+04	8.77E+02	1.83E+02
Hexachloroethane		2.68E-01	NR	NR	8.17E+00	6.57E-01	NR	NR	2.01E+01	1.55E+00	NR	NR	4.81E+01
Indeno(1,2,3-cd)pyrene		3.09E+01	2.12E+02	2.70E+01	6.13E-02	4.22E+01	2.38E+02	3.59E+01	1.53E-01	4.92E+01	2.50E+02	4.11E+01	3.68E-01
Naphthalene		2.78E+01	2.33E+01	1.27E+01	7.64E+01	6.66E+01	5.58E+01	3.04E+01	1.83E+02	1.53E+02	1.31E+02	7.06E+01	4.32E+02
Phenanthrene		9.85E+01	7.17E+03	9.72E+01	3.60E+01	2.24E+02	1.76E+04	2.22E+02	8.96E+01	4.48E+02	4.07E+04	4.43E+02	2.14E+02
Pyrene		6.25E+02	8.79E+04	6.20E+02	2.20E+00	1.25E+03	2.04E+05	1.24E+03	5.49E+00	2.05E+03	4.23E+05	2.04E+03	1.32E+01
Phenol		1.60E+02	4.58E+02	1.20E+02	2.42E+04	2.96E+02	6.95E+02	2.09E+02	3.81E+04	5.86E+02	1.19E+03	3.93E+02	7.03E+04
Total Petroleum Hydrocarbons													
Aliphatic hydrocarbons EC ₅ -EC ₆		4.99E+03	4.24E+01	4.23E+01	3.04E+02	1.13E+04	7.79E+01	7.78E+01	5.58E+02	2.50E+04	1.61E+02	1.60E+02	1.15E+03
Aliphatic hydrocarbons >EC ₆ -EC ₈		1.49E+04	1.04E+02	1.03E+02	1.44E+02	3.43E+04	2.31E+02	2.31E+02	3.22E+02	7.11E+04	5.29E+02	5.28E+02	7.36E+02
Aliphatic hydrocarbons >EC ₈ -EC ₁₀		1.61E+03	2.68E+01	2.67E+01	7.77E+01	2.91E+03	6.55E+01	6.51E+01	1.90E+02	4.26E+03	1.56E+02	1.54E+02	4.51E+02
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂		4.57E+03	1.33E+02	1.32E+02	4.75E+01	5.51E+03	3.31E+02	3.26E+02	1.18E+02	5.98E+03	7.93E+02	7.65E+02	2.83E+02
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆		6.27E+03	1.11E+03	1.06E+03	2.37E+01	6.34E+03	2.78E+03	2.41E+03	5.91E+01	6.36E+03	6.67E+03	4.34E+03	1.42E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aromatic hydrocarbons >EC8-EC ₁₀		5.76E+01	4.74E+01	3.45E+01	6.13E+02	1.38E+02	1.16E+02	8.38E+01	1.50E+03	3.07E+02	2.77E+02	1.94E+02	3.58E+02
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂		8.29E+01	2.58E+02	7.52E+01	3.64E+02	1.96E+02	6.39E+02	1.79E+02	8.99E+02	4.25E+02	1.52E+03	3.91E+02	2.15E+03
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆		1.47E+02	2.85E+03	1.45E+02	1.69E+02	3.36E+02	7.07E+03	3.32E+02	4.19E+02	6.81E+02	1.68E+04	6.74E+02	1.00E+03
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	(b)	2.63E+02	NR	NR	5.37E+01	5.45E+02	NR	NR	1.34E+02	9.34E+02	NR	NR	3.21E+02
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	(b)	1.09E+03	NR	NR	4.83E+00	1.47E+03	NR	NR	1.21E+01	1.70E+03	NR	NR	2.90E+01
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	1.09E+03	NR	NR	4.83E+00	1.47E+03	NR	NR	1.21E+01	1.70E+03	NR	NR	2.90E+01

Notes:

EC - equivalent carbon. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%.

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%.

Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1. SR3)

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for boron and selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

Table 5 Human Health Generic Assessment Criteria for Residential with home-grown produce

Compound	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
Metals			
Arsenic	37	37	37
Barium	1,300	1,300	1,300
Beryllium	1.7	1.7	1.7
Boron	300 22	300 22	300 22
Cadmium Chromium (III) - trivalent	910	910	910
Chromium (VI) - hexavalent	21	21	21
Copper	2,500	2,500	2,500
Lead	200	200	200
Elemental Mercury (Hg ⁰)	0.2	0.6	1.2
Inorganic Mercury (Hg ²⁺)	39	39	39
Methyl Mercury (Hg ⁴⁺)	10	10	10
Nickel	130	130	130
Selenium	258	258	258
Vanadium	410	410	410
Zinc	3,900	3,900	3,900
Cyanide (free)	1.4	1.4	1.4
Volatile Organic Compounds			
Benzene	0.20	0.41	0.87
Toluene	130	300	680
Ethylbenzene	50	110	260
Xylene - m	59	140	327
Xylene - o	61	143	332
Xylene - p	57	133	310
Total xylene	57	133	310
Methyl tertiary-Butyl ether (MTBE)	60	110	210
1,1,1,2 Tetrachloroethane	1.20 1.6	2.78 3.5	6.46
1,1,2,2-Tetrachloroethane	9	18	7.7 39
1,1,1-Trichloroethane 1,1,2 Trichloroethane	0.8	1.6	3.5
1,1-Dichloroethene	0.32	0.57	1.16
1,2-Dichloroethane	0.007	0.011	0.019
1,2,4-Trimethylbenzene	1.8	4.3	9.7
1,3,5-Trimethylbenzene	NR	NR	NR
1,2-Dichloropropane	0.034	0.060	0.120
Carbon Tetrachloride (tetrachloromethane)	0.026	0.056	0.127
Chloroethane	11.7	15.9	25.7
Chloromethane	0.012	0.014	0.019
Cis 1,2 Dichloroethene	0.16	0.27	0.52
Dichloromethane	0.62	1.08	1.92
Tetrachloroethene	0.2	0.4	0.9
Trans 1,2 Dichloroethene Trichloroethene	0.28 0.02	0.50 0.03	1.02 0.08
Vinyl Chloride (chloroethene)	0.0006	0.0009	0.0014
Semi-Volatile Organic Compounds	T	10	0.4
2-Chloronaphthalene	5 230	13 540	31 1,170
Acenaphthene Acenaphthylene	180	440	970
Anthracene	2,400	5,500	10,900
Benzo(a)anthracene	7	11	13
Benzo(a)pyrene	5	5	5
Benzo(b)fluoranthene	2.6	3.3	3.7
Benzo(g,h,i)perylene	310	340	350
Benzo(k)fluoranthene	77	92	100
Chrysene	15	22	27
Dibenzo(a,h)anthracene	0.24	0.28	0.30
Fluoranthene	290	560	900
Fluorene Hexachloroethane	170 0.27	410 0.66	880 1.55
Indeno(1,2,3-cd)pyrene	97	36	41
Naphthalene	13	30	71
Phenanthrene	100	220	440
Pyrene	620	1,240	2,040
Phenol	120	210	390
Total Petroleum Hydrocarbons			
Aliphatic hydrocarbons EC ₅ -EC ₆	42	78	160
Aliphatic hydrocarbons >EC ₆ -EC ₈	100	230	530
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	27	65	154
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	130 (48)	330 (118)	760 (283)
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	1,100 (24)	2,400 (59)	4,300 (142)
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆ Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅			
	65,000 (8)	92,000 (21)	110,000
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	65,000 (8)	92,000 (21)	110,000
Aromatic hydrocarbons >EC ₈ -EC ₁₀	30	80	190
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	80	180	390
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	140	330	670
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	260	540	930
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	1,100	1,500	1,700
,			
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	1,100	1,500	1,700

Minerals Asbestos

Stage 1 test - No asbestos detected with ID; Stage 2 test - <0.001% dry weight (exceedance of either equates to an exceedance of the GAC)1

lotes:

"Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

NR - SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used

EC - equivalent carbon. SAC - soil assessment criteria.

1 LOD for weight of asbestos per unit weight of soil calculated on a dry weight basis using PLM, handpicking and gravimetry.

The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

(VALUE IN BRACKETS)

RSK has adopted an approach for petroleum hydrocarbons in accordance with LOM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

APPENDIX M GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

GENERIC ASSESSMENT CRITERIA FOR PHYTOTOXIC EFFECTS

Several compounds can inhibit plant growth; hence it is important to have generic assessment criteria (GAC) to promote healthy plant growth. In the absence of other published GAC, the GAC have been obtained from legislation (UK and European) and guidance related to the use of sewage sludge on agricultural fields.

The Council of European Communities Sewage Sludge Directive (86/278/EEC) dated 1986, has been transposed into UK law by Statutory Instrument No. 1263, The Sludge (use in Agriculture) Regulations 1989 (Public Health England, Wales and Scotland), as ammended in 1990 and The Sludge (use in Agriculture) Regulations (Northern Ireland) SR No, 245, 1990. In addition the Department of Environment (DoE) produced a Code of Practice (CoP) (Updated 2nd Edition) in 2006 which provided guidance on the application of sewage sludge on agricultural land (however the status of this document is unclear as it is on the archive section of the Defra website).

The directive seeks to encourage the use of sewage sludge in agriculture and to regulate its use in such a way as to "prevent harmful effects on soil, vegetation, animals and man". To this end, it prohibits the use of <u>untreated sludge</u> on agricultural land unless it is injected or incorporated into the soil. Treated sludge is defined as having undergone "biological, chemical or heat treatment, long-term storage or any other appropriate process so as significantly to reduce its fermentability and the health hazards resulting from its use". To provide protection against potential health risks from residual pathogens, sludge must not be applied to soil in which fruit and vegetable crops are growing, or less than ten months before fruit and vegetable crops are to be harvested. Grazing animals must not be allowed access to grassland or forage land less than three weeks after the application of sludge.

The specified limits of concentrations of selected elements in soil are presented in Table 4 of the updated 2nd Edition of the DoE Code of Practice and are designed to protect plant growth. It is noted that these values are more stringent than the values set in current UK regulations. However since they were ammended following recommendations from the Independent Scientific Committee in 1993. (MAFF/DOE 1993). The GAC are presented in Table 1.

Table 1: Generic assessment criteria

Determinant	Generic assessment criteria (mg/kg)								
Botommant	pH 5.0 < 5.5	pH 5.5 < 6.0	pH 6.0 < 7.0	pH >7.0					
Zinc	200	200	200	300					
Copper	80	100	135	200					
Nickel	50	60	75	110					
Lead	300	300	300	300					
Cadmium	3 3		3	3					
Mercury	1	1	1	1					

Note: Only compounds with assessment criteria documented within the Directive 86/278/EEC have been included, although criteria for 5 additional compounds have been presented within the 2006 CoP.

APPENDIX N GENERIC ASSESSMENT CRITERIA FOR POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75 m below finished ground levels, sample results from depths between 0.5 m and 1.5 m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5 m below the proposed depth of the pipe.

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

Table N1: Generic assessment criteria for water supply pipes

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC (Not including compounds within group 1a)	0.5	0.125
		0.4	2.22
1a	BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic $C_5\!\!-\!\!C_{10}$)	2	1.4
	(Not including compounds within group 2e and 2f)		
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable

Notes: where indicated as 'suitable', the material is considered resistant to permeation or degradation and no threshold concentration has been specified by UKWIR.

APPENDIX O WM3 ASSESSMENT

Haswaste, developed by Dr. lain Haslock.

52254 Ditton Edge, East Malling

TP/WS/BH Depth (m)

Envirolab reference

% Moisture pH (soil) pH (leachate) Arsenic Cadmium Copper CrVI or Chromium Lead Mercury Nickel Selenium Zinc Barium Beryllium Vanadium Cobalt

Manganese Molybdenum **Antimony Aluminium** Bismuth CrIII Iron Strontium Tellurium Thallium Titanium Tungsten Ammoniacal N ws Boron **PAH** (Input Total PAH **OR** individual PAH results) Acenaphthene

Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(ah)anthracene Fluoranthene Fluorene Indeno(123cd)pyrene Naphthalene Phenanthrene Pyrene Coronene Total PAHs (16 or 17) **TPH**

Petrol Diesel Lube Oil Crude Oil White Spirit / Kerosene Creosote Unknown TPH with ID Unknown TPHCWG Total Sulphide Complex Cyanide Free (or Total) Cyanide Thiocyanate Elemental/Free Sulphur Phenols Input Total Phenols HPLC OR individual Phenol results.

Phenol mg/kg Cresols mg/kg **Xylenols** mg/kg Resourcinol mg/kg Phenols Total by HPLC mg/kg

BTEX Input Total BTEX OR individual BTEX results.

Benzene mg/kg Toluene mg/kg Ethylbenzene mg/kg **Xylenes** mg/kg Total BTEX mg/kg

PCBs Total (eg EC7/WHO12) PBBs (POPs) Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only available)

PCBs (POPs)

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

	TP1 0.50 20/11074/2	TP3 0-0.3 20/11074/5	TP4 0-0.3 20/11074/7	TP5 0-0.3 20/11074/8	TP6 0-0.3 20/11074/10	TP7 0-0.3 20/11074/12	TP8 0.60 20/11074/15	TP10 0-0.3 20/11074/18	TP11 0-0.3 20/11074/20
%	6.99	7.35	6.98	6.88	6.50	6.66	6.46		5.98
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	24 0.9 11 28 33 0.28 22 1 49	14 0.7 10 22 34 0.17 20 1 43	10 0.6 13 20 40 0.18 16 1	16 0.8 19 21 67 0.43 20 1	11 0.7 19 23 52 0.49 19 1	18 0.8 22 27 71 3.76 20 1	9 0.7 8 24 15 0.17 20 1 39		11 0.7 45 23 44 0.17 18 1 67
mg/kg									
mg/kg mg/kg mg/kg mg/kg mg/kg									
mg/kg	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.07	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.07	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.07	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.03	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.03	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.03	0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.03		0.01 0.02 0.04 0.05 0.05 0.07 0.06 0.04 0.08 0.01 0.03 0.03 0.03 0.07
mg/kg mg/kg mg/kg									
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg									
mg/kg mg/kg mg/kg mg/kg									
mg/kg s. mg/kg mg/kg mg/kg mg/kg mg/kg			0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01			
mg/kg									
mg/kg									

TP1

TP3

TP4

TP5

TP8

TP10

TP11

Haswaste, developed by Dr. lain Haslock.

52254 Ditton Edge, East Malling

TP/WS/BH
Depth (m)
Envirolab reference

Tin excluding Organotin

mg/kg

Tin excl Organotin

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP6

TP7

Depth (m)		0.50	0-0.3	0-0.3	0-0.3	0-0.3	0-0.3	0.60	0-0.3	0-0.3
Envirolab reference		20/11074/2	20/11074/5	20/11074/7	20/11074/8	20/11074/10	20/11074/12	20/11074/15	20/11074/18	20/11074/20
	•	•					•			
POPs Dioxins and Furans Input To										
OR individual Dioxin and Furan res 2,3,7,8-TeCDD				ı				<u> </u>		
1,2,3,7,8-PeCDD	mg/kg mg/kg									
1,2,3,4,7,8-HxCDD	mg/kg									
1,2,3,6,7,8-HxCDD	mg/kg									
1,2,3,7,8,9-HxCDD	mg/kg									
1,2,3,4,6,7,8-HpCDD	mg/kg									
OCDD	mg/kg									
2,3,7,8-TeCDF	mg/kg									
1,2,3,7,8-PeCDF	mg/kg									
2,3,4,7,8-PeCDF	mg/kg									
1,2,3,4,7,8-HxCDF	mg/kg									
1,2,3,6,7,8-HxCDF	mg/kg									
2,3,4,6,7,8-HxCDF	mg/kg									
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF	mg/kg									
1,2,3,4,7,8,9-HpCDF	mg/kg mg/kg									
OCDF	mg/kg									
Total Dioxins and Furans	mg/kg									
. otal Dioxilio alla I arallo		L		l		l				
Some Pesticides (POPs unless of	herwise stated)									
<u> </u>	- !		<u> </u>	ı		ı	T	<u></u>	0.010005	
Aldrin	mg/kg								0.010000	
α Hexachlorocyclohexane (alpha-	ma/ka								0.010000	
HCH) (leave empty if total HCH results used)	mg/kg								0.010000	
β Hexachlorocyclohexane (beta-										
HCH) (leave empty if total HCH	mg/kg								0.010000	
results used)	0 0									
α Cis-Chlordane (alpha) OR Total	ma ar/lea								0.010000	
Chlordane	mg/kg								0.010000	
δ Hexachlorocyclohexane (delta-										
HCH) (leave empty if total HCH	mg/kg								0.010000	
results used)										
Dieldrin	mg/kg								0.010000 0.010000	
Endrin	mg/kg								0.010000	
χ Hexachlorocyclohexane (gamma-	mg/kg									
HCH) (lindane) OR Total HCH	mg/kg									
Heptachlor	mg/kg								0.010000	
Hexachlorobenzene	mg/kg								0.010000	
o,p'-DDT (leave empty if total DDT										
results used)	mg/kg								0.010000	
p,p'-DDT <i>OR</i> Total DDT	mg/kg								0.010000	
χ Trans-Chlordane (gamma)										
(leave empty if total Chlordane	mg/kg								0.010000	
results used)										
Chlordecone (kepone)	mg/kg									
Pentachlorobenzene	mg/kg									
Mirex	mg/kg									
Toxaphene (camphechlor)	mg/kg	[l		l				
Tin	ı			T		T	T	T '''		
Tin (leave empty if Organotin and										
Tin excl Organotin results used)	mg/kg									
				l		l				
Organotin			<u> </u>	I		I		<u> </u>		
Dibutyltin; DiBT	mg/kg									
Tributyltin; TriBT	mg/kg									
Triphenyltin; TriPT	mg/kg									
Tetrabutyltin; TeBT Tin excluding Organotin	mg/kg									
LID AVCILIDING ()raanotin										

52254 Ditton Edge, East Malling

TP/WS/BH
Depth (m)
Envirolab reference

Asbestos in Soil	Thresholds
Asbestos detected in Soil (enter Y	>
or N)	1

Asbestos % Composition in Soil	see "Carc HP7
(Matrix Loose Fibres or	% Asbestos in
Microscopic Identifiable Pieces	Soil (Fibres)"
only)	below
Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces) Please be advised, if the calculation cell is "0.00000" DOES NOT MEAN asbestos testing has been undertaken and the result is zero.	≥0.1%

visible with the naked eye detected in the Soil (enter Y or N)
--

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP1	TP3	TP4	TP5	TP6	TP7	TP8	TP10	TP11
0.50	0-0.3	0-0.3	0-0.3	0-0.3	0-0.3	0.60	0-0.3	0-0.3
20/11074/2	20/11074/5	20/11074/7	20/11074/8	20/11074/10	20/11074/12	20/11074/15	20/11074/18	20/11074/20

		N	N	N	N			
		lf .	Asbestos in Soil above	is "Y", the soil is Hazard	ous Waste HP5 and HI	P7		
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
If Asbestos in Soil abo	ve is "Y", but Asbestos	% above is "<0.1%", th	e soil is Non Hazardous	Waste. You can only	use Asbestos % results	where loose fibres or m	nicro pieces are only pre	sent. You cannot use

Asbestos % results when visual identifiable pieces are present.

If visual identifiable pieces of asbestos are present, <u>you cannot use Asbestos % results</u> and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

Comparing HPS	Hazardous Property	Thresholds	Cut Off Value			If cells below turn	ellow and the text tu	rns red, the samples s	should be classified a	s Hazardous Waste.		
Product Prod				0.00054	0.00007	0.00546	0.00644	0.00597	0.00756	0.00580	0.00000	0.00587
Common C												0.00587
Depart Target Organ Toxicity HPS 1156 Department 1156												0.00854
December Target Organ Toxicity HPS 20% December December	miani ne4	220 76	<176	0.00370	0.00318	0.00472	0.00620	0.00600	0.00634	0.00496	0.00000	0.00874
Comparison Com	Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Special Target Organ Toxicity HP5	Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	Specifc Target Organ Toxicity HP5	≥1%		0.00538	0.00422	0.00384	0.00404	0.00442	0.00518	0.00461	0.00000	0.00442
Sector Topicity HP6 (Oran) 50 1% 60 1%	Specifc Target Organ Toxicity HP5	≥10%		0.00330	0.00340	0.00400	0.00670	0.00520	0.00710	0.00150	0.00000	0.00440
Acute Toxicity HP6 (Oran) 20.25% 6.1	spiration Toxicity HP5	≥10%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 (Ora) 25% 4.1% 0.00052 0.00437 0.00398 0.00417 0.00466 0.008533 0.00475 0.00000	cute Toxicity HP6 (Oral)	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HPF (Ormal) 225% 21% 0.00000 0.000006 0.00007 0.000004 0.000005 0.0000000 0.00000000	cute Toxicity HP6 (Oral)	≥0.25%	<0.1%	0.00320	0.00187	0.00134	0.00216	0.00150	0.00275	0.00121	0.00000	0.00147
Acute Toxicity HPS (Dermal) 20.25% <0.11% <0.00003 0.00002 0.00002 0.000004 0.00005 0.000038 0.00002 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000	Acute Toxicity HP6 (Oral)		<0.1%	0.00552	0.00437	0.00398	0.00417	0.00456	0.00533	0.00475	0.00001	0.00456
Acute Toxicity HPB (Dermal) 22.5% -0.1% 0.000538 0.00422 0.00384 0.00443 0.0042 0.00518 0.00461 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000	Acute Toxicity HP6 (Oral)	≥25%	<1%	0.00909	0.00866	0.00878	0.01298	0.01127	0.01372	0.00653	0.00000	0.01321
Acute Toxicity HP6 (Dermar) 2:15% 4.1% 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000	Acute Toxicity HP6 (Dermal)	≥0.25%	<0.1%	0.00003	0.00002	0.00002	0.00004	0.00005	0.00038	0.00002	0.00000	0.00002
Acute Toxicity HP6 (Inhal) 255% 41% 0.00009 0.00007 0.00008 0.00007 0.000000 0.000000 0.000000 0.0000000 0.00000000		≥2.5%	<0.1%	0.00538	0.00422	0.00384	0.00403	0.00442	0.00518	0.00461	0.00000	0.00442
Acute Toxicity HP6 (Inhal) 20.5% 20.1% 20.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.000000 0.000000 0.0000000 0.0000000 0.0000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.00000000	Acute Toxicity HP6 (Dermal)	≥15%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 (Inhal) 20.5% <0.1% <0.00549 0.00434 0.00032 0.00416 0.00044 0.00004 0.000014 0.0000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.000014 0.0000014 0.0000014 0.0000014 0.0000014 0.0000014 0.0000014 0.0000014 0.00000014 0.00000014 0.00000000 0.000000000 0.00000000	Acute Toxicity HP6 (Dermal)	≥55%	<1%	0.00009	0.00007	0.00006	0.00008	0.00007	0.00008	0.00007	0.00000	0.00007
Acute Toxicity HP6 (inhal) 22.5% 2.1% 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.000014 0.000014 0.00014 0.0000014 0.000014	Acute Toxicity HP6 (Inhal)	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Court Process Proces	cute Toxicity HP6 (Inhal)	≥0.5%	<0.1%	0.00549	0.00431	0.00392	0.00416	0.00454	0.00564	0.00470	0.00000	0.00450
Carcinogenic HPT 20.1% 0.00538	cute Toxicity HP6 (Inhal)	≥3.5%	<0.1%	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00014	0.00000	0.00014
Contrologenic HP7	cute Toxicity HP6 (Inhal)	≥22.5%	<1%	0.00899	0.00857	0.00870	0.01289	0.01119	0.01363	0.00644	0.00000	0.01312
21% 21% 21% 21% 21% 21% 21% 21% 21,000mg/kg 21,000mg/kg 21,000mg/kg 21,000mg/kg 20,000 20,0	Carcinogenic HP7	≥0.1%		0.00538	0.00422	0.00400	0.00670	0.00520	0.00710	0.00461	0.00000	0.00442
21% 2.000000 2.00000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000 2.0000000 2.000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000 2.0000000000	Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Carcinogenic HP7 biglip marker less (Unknown TPH vith ID only) Cell only applicable if TPH >1,000mg/kg H Corrosive HP8 pH (soil or acachate) H S ≤2 (0.99		≥1%]	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Cell only applicable if TPH >1,000mg/kg EDIV/0!		≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
eachate) H8 21.5 H8 21.5 H8 22 6.99 7.35 6.98 6.88 6.50 6.66 6.46 0.00 eachate) 10xic for Reproduction HP10 ≥0.3% 0.00444 0.00404 0.00400 0.00670 0.00520 0.00710 0.00404 0.00000 10xic for Reproduction HP10 ≥3% 0.00538 0.00422 0.00384 0.00403 0.00442 0.00518 0.00441 0.00000 0.00670 0.00520 0.00710 0.00404 0.00000 0.00520 0.00710 0.00404 0.00000 0.00538 0.00422 0.00384 0.00403 0.00442 0.00518 0.00461 0.00000 0.00 0.00 0.00 0.00 0.00 0.00	(Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Coxic for Reproduction HP10 ≥0.3% 0.00444 0.00404 0.00400 0.00670 0.00520 0.00710 0.00404 0.00000	. `	H8 ≥11.5		6.99	7.35	6.98	6.88	6.50	6.66	6.46	0.00	5.98
Coxic for Reproduction HP10 ≥0.3% 0.00444 0.00404 0.00400 0.00670 0.00520 0.00710 0.00404 0.00000	· · · · · ·	H8 ≤2		6.99	7.35	6.98	6.88	6.50	6.66	6.46	0.00	5.98
Coxic for Reproduction HP10 ≥3% 0.00538 0.00422 0.00384 0.00403 0.00442 0.00518 0.00461 0.00000		≥0.3%	1	0.00444	0.00404	0.00400	0.00670	0.00520	0.00710	0.00404	0.00000	0.00440
Mutagenic HP11 Unknown TPH vith ID only Cell only applicable if TPH >1,000mg/kg ≥0.01% 0.00442 0.00433 0.00442 0.00518 0.00461 0.00000 Mutagenic HP11 Unknown TPH vith ID only Cell only applicable if TPH >1,000mg/kg ≥0.01% #DIV/0! #DIV/0! <td></td> <td></td> <td>]</td> <td>0.00538</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00442</td>]	0.00538								0.00442
Mutagenic HP11 Unknown TPH vith ID ≥1,000mg/kg Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg ≥0.01% Mutagenic HP11 ≥ 100 mg/kg ≥1,400mg/kg Mutagenic HP11 ≥ 100 mg/kg ≥1,400mg/kg Produces Toxic Gases HP12 cyanide ≥1,400mg/kg Ovanide ≥1,200mg/kg O.0 0.0 <td< td=""><td></td><td>≥0.1%</td><td>]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.00442</td></td<>		≥0.1%]									0.00442
(Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg Mutagenic HP11 Produces Toxic Gases HP12 Cyanide P		≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Produces Toxic Gases HP12 Sulphide ≥1,400mg/kg 0.0	(Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Produces Toxic Gases HP12	/lutagenic HP11	≥1%		0.00444	0.00404	0.00323	0.00404	0.00384	0.00404	0.00404	0.00000	0.00364
Produces Toxic Gases HP12 ≥1,200mg/kg Cyanide Produces Toxic Gases HP12 >2 600mg/kg O	Produces Toxic Gases HP12											0.0
Produces Toxic Gases HP12	Produces Toxic Gases HP12	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
niocyanate I I I I I I I I I I I I I I I I I I I		≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising ≥10% 0.00538 0.00422 0.00384 0.00404 0.00442 0.00518 0.00461 0.00000		≥10%	1	0.00538	0.00422	0.00384	0.00404	0.00442	0.00518	0.00461	0.00000	0.00442

52254 Ditton Edge, East Malling

TP/WS/RH

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP/WS/BH			TP1	TP3	TP4	TP5	TP6	TP7	TP8	TP10	TP11
Depth (m)			0.50	0-0.3	0-0.3	0-0.3	0-0.3	0-0.3	0.60	0-0.3	0-0.3
Envirolab reference			20/11074/2	20/11074/5	20/11074/7	20/11074/8	20/11074/10	20/11074/12	20/11074/15	20/11074/18	20/11074/20
Ecotoxic HP14	250/	0.404		0.0004	0.04050	0.0004	0.00450	0.00004	0.04740	0.0004	0.00705
amended v6	≥25%	<0.1%	0.02398	0.02031	0.01952	0.02661	0.02450	0.02934	0.01740	0.00001	0.02765
Ecotoxic HP14	≥25%	<0.1% / 1.0%	0.02398	0.02031	0.01952	0.02661	0.02450	0.02935	0.01740	0.00001	0.02765
amended v6	22070	20.1767 1.076	0.02390	0.02031	0.01932	0.02001	0.02430	0.02933	0.01740	0.00001	0.02703
Ecotoxic HP14	≥25%	<0.1% / 1.0%	2.39750	2.03050	1.95150	2.66050	2.44980	2.93440	1.74030	0.00120	2.76520
amended v6	-20 70	20.1707 1.070	2.00700	2.0000	1.55150	2.0000	2.44000	2.55440	1.74000	0.00120	2.70020
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000100	0.00000000
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000

If other contaminants need adding to Haswaste, please contact Envirolab.

TP12

0.60

TP13

0-0.3

WS1

0.50

WS4

0-0.3

20/11252/7

6.95

12

0.7

17

23

49

0.17

18

1

48

WS5

0.50

20/11252/10

7.24

14

1.1

4

25

26

0.17

23

1

48

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP16

0.50

TP17

0-0.3

Haswaste, developed by Dr. lain Haslock.

52254 Ditton Edge, East Malling

TP/WS/BH Depth (m) Envirolab reference

% Moisture
pH (soil)
pH (leachate)
Arsenic
Cadmium
Copper
CrVI or Chromium
Lead
Mercury
Nickel
Selenium
Zinc
Barium
Beryllium
Vanadium
Cobalt
Manganese
Molybdenum
Antimony
Aluminium
Bismuth
CrIII
Iron Strontium
Tellurium
Thallium
Titanium
Tungsten
Ammoniacal N
ws Boron
PAH (Input Total PAH OR individual

PAH (Input Total PAH OR individual PAH results)

()
Acenaphthene
Acenaphthylene
Anthracene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(ghi)perylene
Benzo(k)fluoranthene
Chrysene
Dibenzo(ah)anthracene
Fluoranthene
Fluorene
Indeno(123cd)pyrene
Naphthalene
Phenanthrene
Pyrene
Coronene
Total PAHs (16 or 17)

TPH Petrol Diesel Lube Oil Crude Oil

White Spirit / Kerosene Creosote Unknown TPH with ID Unknown TPHCWG Total Sulphide Complex Cyanide Free (or Total) Cyanide Thiocyanate

Elemental/Free Sulphur

results. Phenol Cresols Xylenols Resourcinol Phenols Total by HPLC

Benzene mg/kg Toluene mg/kg Ethylbenzene mg/kg **Xylenes** mg/kg Total BTEX mg/kg

PCBs (POPs) PCBs Total (eg EC7/WHO12) PBBs (POPs) Hexabromobiphenyl (Total or

PBB153; 2,2',4,4',5,5'- if only

available)

20/11074/23 20/11074/28 20/11074/31 20/11252/2 20/11074/24 20/11074/27 20/11074/32 6.56 6.79 6.37 6.47 7.66 7.66 10 9 mg/kg 0.9 0.6 0.6 0.7 0.7 0.6 mg/kg 40 9 16 8 11 14 mg/kg 24 19 28 18 18 22 mg/kg 15 34 14 40 18 26 mg/kg 0.17 0.17 0.17 0.59 0.17 0.17 mg/kg 18 16 23 16 15 17 mg/kg 1 1 1 1 1 1 mg/kg 40 59 41 47 41 39

TP15

0-0.3

TP14

0.50

mg/kg mg/kg

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

mg/kg mg/kg mg/kg

mg/kg mg/kg mg/kg mg/kg

mg/kg

mg/kg

mg/kg mg/kg mg/kg Phenols Input Total Phenols HPLC OR individual Phenol mg/kg mg/kg mg/kg mg/kg mg/kg BTEX Input Total BTEX OR individual BTEX results.

> mg/kg mg/kg

0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
0.04	0.04	0.04	0.04	0.04	0.04	0.08	0.04
0.04	0.04	0.04	0.04	0.04	0.04	0.08	0.04
0.05	0.05	0.05	0.05	0.05	0.05	0.09	0.05
0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
0.06	0.06	0.06	0.06	0.06	0.06	0.11	0.06
0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
0.08	0.08	0.08	0.08	0.08	0.08	0.15	0.08
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.03
0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
0.03	0.03	0.03	0.03	0.03	0.03	0.05	0.05
0.07	0.07	0.07	0.07	0.07	0.07	0.14	0.07

TP12

TP13

TP14

TP15

WS1

WS4

WS5

Haswaste, developed by Dr. lain Haslock.

52254 Ditton Edge, East Malling

TP/WS/BH Depth (m)

Tin excluding Organotin

mg/kg

Tin excl Organotin

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP16

TP17

117440/211		2	11.10		11.10	1				,,,,,,
Depth (m)		0.60	0-0.3	0.50	0-0.3	0.50	0-0.3	0.50	0-0.3	0.50
Envirolab reference		20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31	20/11074/32	20/11252/2	20/11252/7	20/11252/10
Envirolab reference		20/11074/23	20/11074/24	20/11074/27	20/11074/20	20/11074/31	20/11074/32	20/11232/2	20/11232/1	20/11232/10
POPs Dioxins and Furans Input To	otal Dioxins and Furans									
OR individual Dioxin and Furan res										
						1				
2,3,7,8-TeCDD	mg/kg									
1,2,3,7,8-PeCDD	mg/kg									
1,2,3,4,7,8-HxCDD	mg/kg									
1,2,3,6,7,8-HxCDD	mg/kg									
1,2,3,7,8,9-HxCDD	mg/kg									
1,2,3,4,6,7,8-HpCDD	mg/kg									
OCDD	mg/kg									
2,3,7,8-TeCDF										
	mg/kg									
1,2,3,7,8-PeCDF	mg/kg									
2,3,4,7,8-PeCDF	mg/kg									
1,2,3,4,7,8-HxCDF	mg/kg									
1,2,3,6,7,8-HxCDF										
	mg/kg									
2,3,4,6,7,8-HxCDF	mg/kg									
1,2,3,7,8,9-HxCDF	mg/kg									
1,2,3,4,6,7,8-HpCDF	mg/kg									
1,2,3,4,7,8,9-HpCDF	mg/kg									
OCDF	mg/kg									
Total Dioxins and Furans	mg/kg									
Some Pesticides (POPs unless of	herwise stated)									
Aldrin	mg/kg						0.010000			
α Hexachlorocyclohexane (alpha-										
HCH) (leave empty if total HCH	ma/ka						0.010000			
	mg/kg						0.010000			
results used)										
β Hexachlorocyclohexane (beta-										
HCH) (leave empty if total HCH	mg/kg						0.010000			
results used)										
α Cis-Chlordane (alpha) <i>OR Total</i>	mg/kg						0.010000			
Chlordane	IIIg/kg						0.010000			
δ Hexachlorocyclohexane (delta-										
	70 g/ls g						0.040000			
HCH) (leave empty if total HCH	mg/kg						0.010000			
results used)										
Dieldrin	mg/kg						0.010000			
Endrin	mg/kg						0.010000			
	99									
χ Hexachlorocyclohexane (gamma-										
HCH) (lindane) OR Total HCH	mg/kg									
(illidarie) OK Total Hori										
Heptachlor	mg/kg						0.010000			
Hexachlorobenzene										
	mg/kg						0.010000			
o,p'-DDT (leave empty if total DDT	mg/kg						0.010000			
results used)	mg/kg					<u> </u>	5.010000			
p,p'-DDT OR Total DDT	mg/kg						0.010000			
χ Trans-Chlordane (gamma)	3 3									
	//						0.040000			
(leave empty if total Chlordane	mg/kg						0.010000			
results used)										
Chlordecone (kepone)	ma/ka	<u> </u>								
	mg/kg	<u> </u>				<u> </u>				
Pentachlorobenzene	mg/kg					ļ				
Mirex	mg/kg									
Toxaphene (camphechlor)	mg/kg									
			I							
<u>Tin</u>										
Tin (leave empty if Organotin and	ma/ka								ļ	
Tin excl Organotin results used)	mg/kg								ļ	
Organotin										
Dibutyltin; DiBT	mg/kg									
Tributyltin: TriBT	malka									
Tributyltin; TriBT	mg/kg									
Triphenyltin; TriPT	mg/kg									
Tetrabutyltin; TeBT	mg/kg									
		-	-	-	-	-				

52254 Ditton Edge, East Malling

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil	Thresholds
Asbestos detected in Soil (enter Y or N)	Y
Asbestos % Composition in Soil	see "Carc HP7

(Matrix Loose Fibres or % Asbestos in Soil (Fibres)" Microscopic Identifiable Pieces below Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces) Please be advised, if the ≥0.1% calculation cell is "0.00000" DOES NOT MEAN asbestos testing has been undertaken and the result is zero.

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)	Y
---	---

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP12	TP13	TP14	TP15	TP16	TP17	WS1	WS4	WS5			
0.60	0-0.3	0.50	0-0.3	0.50	0-0.3	0.50	0-0.3	0.50			
20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31	20/11074/32	20/11252/2	20/11252/7	20/11252/10			
If Asbestos in Soil above is "Y", the soil is Hazardous Waste HP5 and HP7											
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000			
If Asbestos in Soil abo	ove is "Y", but Asbestos	% above is "<0.1%", th				where loose fibres or m	nicro pieces are only pre	sent. You cannot use			
	Γ	Γ	ASDESTOS % results	when visual identifiable	pieces are present.	Ī	I				

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05. Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

Hazardous Property	Thresholds	Cut Off Value			If cells below turn y	ellow and the text tu	rns <mark>red</mark> , the samples s	hould be classified a	s Hazardous Waste.		
Corrosive HP8	≥5%	<1%	0.00527	0.00484	0.00670	0.00491	0.00425	0.00000	0.00660	0.00600	0.00665
rritant HP4	≥10%	<1%	0.00190	0.00571	0.00234	0.00326	0.00237	0.00000	0.00328	0.00351	0.00230
rritant HP4	≥20%	<1%	0.00489	0.00777	0.00568	0.00505	0.00463	0.00000	0.00435	0.00558	0.00511
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00001
Specifc Target Organ Toxicity HP5	≥1%		0.00461	0.00365	0.00538	0.00346	0.00346	0.00000	0.00422	0.00442	0.00480
Specifc Target Organ Toxicity HP5	≥10%		0.00150	0.00340	0.00140	0.00400	0.00180	0.00000	0.00260	0.00490	0.00260
Aspiration Toxicity HP5	≥10%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
acute Toxicity HP6 (Oral)	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 (Oral)	≥0.25%	<0.1%	0.00068	0.00121	0.00134	0.00151	0.00081	0.00000	0.00239	0.00160	0.00187
Acute Toxicity HP6 (Oral)	≥5%	<0.1%	0.00475	0.00379	0.00552	0.00360	0.00360	0.00001	0.00437	0.00456	0.00494
Acute Toxicity HP6 (Oral)	≥25% >0.25%	<1%	0.00645	0.01124	0.00717	0.00913	0.00649	0.00000	0.00701	0.01055	0.00783
Acute Toxicity HP6 (Dermal)	≥0.25% ≥2.5%	<0.1% <0.1%	0.00002 0.00461	0.00002 0.00365	0.00002 0.00538	0.00006 0.00346	0.00002 0.00346	0.00000 0.00000	0.00002 0.00422	0.00002 0.00442	0.00002 0.00480
Acute Toxicity HP6 (Dermal) Acute Toxicity HP6 (Dermal)	≥2.5% ≥15%					0.00346	0.00346				
Acute Toxicity HP6 (Dermai) Acute Toxicity HP6 (Dermai)	≥15% ≥55%	<0.1% <1%	0.00000 0.00006	0.00000 0.00007	0.00000 0.00009	0.00007	0.00000	0.00000 0.00000	0.00000 0.00006	0.00000 0.00007	0.00000 0.00011
Acute Toxicity HP6 (Dermai)	≥0.1%	<0.1%	0.00000	0.00007	0.00009	0.00007	0.00000	0.00000	0.00000	0.00007	0.00001
Acute Toxicity HP6 (Inhal)	≥0.5%	<0.1%	0.00469	0.00374	0.00548	0.00359	0.00353	0.00000	0.00430	0.00450	0.00493
Acute Toxicity HP6 (Inhal)	≥3.5%	<0.1%	0.00014	0.00014	0.00014	0.00014	0.00014	0.00000	0.00014	0.00014	0.00014
Acute Toxicity HP6 (Inhal)	≥22.5%	<1%	0.00638	0.01115	0.00706	0.00904	0.00641	0.00000	0.00694	0.01046	0.00770
Carcinogenic HP7	≥0.1%	1170	0.00461	0.00365	0.00538	0.00400	0.00346	0.00000	0.00422	0.00490	0.00480
Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.00000000
Carcinogenic HP7	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00000
Carcinogenic HP7 Unknown TPH vith ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
oH Corrosive HP8 pH (soil or eachate)	H8 ≥11.5		7.66	6.56	6.79	6.37	6.47	0.00	7.66	6.95	7.24
oH Corrosive HP8 pH (soil or eachate)	H8 ≤2		7.66	6.56	6.79	6.37	6.47	0.00	7.66	6.95	7.24
oxic for Reproduction HP10	≥0.3%		0.00364	0.00340	0.00465	0.00400	0.00303	0.00000	0.00343	0.00490	0.00465
Toxic for Reproduction HP10	≥3%		0.00461	0.00365	0.00538	0.00346	0.00346	0.00000	0.00422	0.00442	0.00480
Mutagenic HP11	≥0.1%		0.00461	0.00365	0.00538	0.00346	0.00346	0.00000	0.00422	0.00442	0.00480
Mutagenic HP11 Unknown TPH vith ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only) Cell only applicable if TPH >1,000mg/kg	≥0.01%		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
/lutagenic HP11	≥1%		0.00364	0.00323	0.00465	0.00323	0.00303	0.00000	0.00343	0.00364	0.00465
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%		0.00461	0.00365	0.00538	0.00346	0.00346	0.00000	0.00422	0.00442	0.00480

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

Haswaste, developed by Dr. lain Haslock.

52254 Ditton Edge, East Malling

TP/WS/BH Depth (m) Envirolab reference

TP12	TP13	TP14	TP15	TP16	TP17	WS1	WS4	WS5
0.60	0-0.3	0.50	0-0.3	0.50	0-0.3	0.50	0-0.3	0.50
20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31	20/11074/32	20/11252/2	20/11252/7	20/11252/10

Envirolab reference			20/11074/23	20/11074/24	20/11074/27	20/11074/28	20/11074/31	20/11074/32	20/11252/2	20/11252/7	20/11252/10
Ecotoxic HP14	≥25%	-0.40/	0.04602	0.02265	0.04040	0.02045	0.04606	0.00004	0.04960	0.02270	0.02068
amended v6	225%	<0.1%	0.01693	0.02365	0.01919	0.02015	0.01606	0.00001	0.01869	0.02278	0.02068
Ecotoxic HP14	>050/	0.407 / 4.007	0.04000	0.00005	0.04040	0.00045	0.04500	0.00004	0.04.000	0.00070	0.00000
amended v6	≥25%	<0.1% / 1.0%	0.01693	0.02365	0.01919	0.02015	0.01606	0.00001	0.01869	0.02278	0.02068
Ecotoxic HP14	≥25%	<0.1% / 1.0%	1.69250	2.36510	1.91920	2.01530	1.60630	0.00120	1.86910	2.27780	2.06760
amended v6						2.0.000		0.00.20			
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000100	0.00000000	0.00000000	0.00000000
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000

If other contaminants need adding to Haswaste, please contact Envirolab.

52254 Ditton Edge, East Malling

TP/WS/BH Depth (m) Envirolab reference

% Moisture pH (soil) pH (leachate) Arsenic Cadmium Copper CrVI or Chromium Lead Mercury Nickel Selenium Zinc Barium Beryllium Vanadium Cobalt Manganese Molybdenum **Antimony Aluminium** Bismuth CrIII Iron Strontium Tellurium Thallium Titanium Tungsten Ammoniacal N ws Boron

PAH (Input Total PAH OR individual PAH results) Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(ah)anthracene Fluoranthene Fluorene Indeno(123cd)pyrene Naphthalene Phenanthrene Pyrene Coronene Total PAHs (16 or 17) **TPH**

Petrol Diesel Lube Oil Crude Oil White Spirit / Kerosene Creosote Unknown TPH with ID Unknown TPHCWG Total Sulphide Complex Cyanide Free (or Total) Cyanide Thiocyanate Elemental/Free Sulphur Phenols Input Total Phenols HPLC OR individual Phenol results.

Phenol mg/k Cresols mg/k Xylenols mg/k Resourcinol mg/k Phenols Total by HPLC mg/l

Benzene mg/k Toluene mg/k Ethylbenzene mg/k **Xylenes** mg/k

BTEX Input Total BTEX OR individual BTEX results.

Total BTEX mg/k PCBs (POPs) PCBs Total (eg EC7/WHO12) mg/k PBBs (POPs)

Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only available)

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

	WCO	Weo	W.CO	WC40				
	WS8 0-0.3	WS9 0-0.3	WS9 0.50	WS12 0.50				
	20/11252/15	20/11252/17	20/11252/18	20/11252/23				
0/		-				T	T	·
%	6.82	6.42		7.06				
mg/kg mg/kg	10 0.6	8 0.6		17 1.2				
mg/kg	13	10		5				
mg/kg mg/kg	21 37	20 14		35 14				
mg/kg	0.17 16	0.17 18		0.17 29				
mg/kg mg/kg	1	1		1				
mg/kg	40	35		36		l .	l .	
mg/kg mg/kg								
mg/kg mg/kg								
mg/kg								
mg/kg mg/kg								
mg/kg mg/kg								
mg/kg								
mg/kg mg/kg								
mg/kg mg/kg								
mg/kg mg/kg								
mg/kg								
mg/kg								
mg/kg	0.01			0.01				
mg/kg mg/kg	0.01 0.02			0.01 0.02				
mg/kg	0.04			0.04				
mg/kg mg/kg	0.04 0.05			0.04 0.05				
mg/kg	0.05			0.05				
mg/kg mg/kg	0.07 0.06			0.07 0.06				
mg/kg	0.04			0.04				
mg/kg	0.08 0.01			0.08 0.01				
mg/kg mg/kg	0.03			0.03				
mg/kg	0.03			0.03				
mg/kg mg/kg	0.03 0.07			0.03 0.07				
mg/kg								
mg/kg								
mg/kg								
mg/kg mg/kg								
3 3								
mg/kg								
mg/kg mg/kg								
mg/kg								
mg/kg								
mg/kg mg/kg								
mg/kg mg/kg								
Phenol		I				<u>I</u>	<u>I</u>	
mg/kg								
mg/kg								
mg/kg mg/kg								
mg/kg								
S. mg/kg	0.01							
mg/kg	0.01							
mg/kg mg/kg	0.01 0.01							
mg/kg	0.01							
							,	_
mg/kg								
mg/kg								

WS8

0-0.3

WS9

0-0.3

WS9

0.50

WS12

0.50

Haswaste, developed by Dr. lain Haslock.

52254 Ditton Edge, East Malling

TP/WS/BH
Depth (m)
Envirolab reference

Tin excl Organotin

mg/kg

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

Envirolab reference		20/11252/15	20/11252/17	20/11252/18	20/11252/23						
POPs Dioxins and Furans Input Total Dioxins and Furans OR individual Dioxin and Furan results.											
2,3,7,8-TeCDD	uits. mg/kg										
1,2,3,7,8-PeCDD	mg/kg										
1,2,3,4,7,8-HxCDD	mg/kg										
1,2,3,6,7,8-HxCDD	mg/kg										
1,2,3,7,8,9-HxCDD	mg/kg										
1,2,3,4,6,7,8-HpCDD	mg/kg										
OCDD	mg/kg										
2,3,7,8-TeCDF 1,2,3,7,8-PeCDF	mg/kg										
2,3,4,7,8-PeCDF	mg/kg mg/kg										
1,2,3,4,7,8-HxCDF	mg/kg										
1,2,3,6,7,8-HxCDF	mg/kg										
2,3,4,6,7,8-HxCDF	mg/kg										
1,2,3,7,8,9-HxCDF	mg/kg										
1,2,3,4,6,7,8-HpCDF	mg/kg										
1,2,3,4,7,8,9-HpCDF	mg/kg										
OCDF	mg/kg										
Total Dioxins and Furans	mg/kg										
Some Pesticides (POPs unless of	therwise stated)										
Aldrin	mg/kg			0.010000					ļ		
α Hexachlorocyclohexane (alpha-											
HCH) (leave empty if total HCH results used)	mg/kg			0.010000							
β Hexachlorocyclohexane (beta-											
HCH) (leave empty if total HCH	mg/kg			0.010000							
results used)											
α Cis-Chlordane (alpha) <i>OR Total</i>	mg/kg			0.010000							
Chlordane											
δ Hexachlorocyclohexane (delta-	700 CI /Is CI			0.040000							
HCH) (leave empty if total HCH results used)	mg/kg			0.010000							
Dieldrin	mg/kg			0.010000					-		
Endrin	mg/kg			0.010000							
χ Hexachlorocyclohexane (gamma-HCH) (lindane) <i>OR Total HCH</i>	mg/kg										
	,			0.040000							
Heptachlor	mg/kg			0.010000							
Hexachlorobenzene o,p'-DDT (leave empty if total DDT	mg/kg			0.010000							
results used)	mg/kg			0.010000							
p,p'-DDT <i>OR</i> Total DDT	mg/kg			0.010000							
χ Trans-Chlordane (gamma)	3 3										
(leave empty if total Chlordane	mg/kg			0.010000							
results used)											
Chlordecone (kepone)	mg/kg										
Pentachlorobenzene	mg/kg										
Mirex	mg/kg										
Toxaphene (camphechlor)	mg/kg										
Tin											
Tin (leave empty if Organotin and	_										
Tin excl Organotin results used)	mg/kg										
Organotin	1		.								
Dibutyltin; DiBT	mg/kg										
Tributyltin; TriBT	mg/kg										
Triphenyltin; TriPT	mg/kg										
Tetrabutyltin; TeBT	mg/kg										
Tin excluding Organotin											

52254 Ditton Edge, East Malling

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil Thresholds Asbestos detected in Soil (enter Y or N)

Asbestos % Composition in Soil see "Carc HP7 (Matrix Loose Fibres or % Asbestos in Soil (Fibres)" Microscopic Identifiable Pieces below Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces) Please be advised, if the ≥0.1% calculation cell is "0.00000" DOES NOT MEAN asbestos testing has been undertaken and the result is zero.

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)

> Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only)

Cell only applicable if TPH >1,000mg/kg

Produces Toxic Gases HP12

Produces Toxic Gases HP12

Produces Toxic Gases HP12

Mutagenic HP11

Sulphide

Cyanide

Thiocyanate

≥0.01%

≥1,400mg/kg

≥1,200mg/kg

≥2,600mg/kg

#DIV/0!

0.00323

0.0

0.0

0.0

#DIV/0!

0.00364

0.0

0.0

0.0

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

WS8	WS9	WS9	WS12							
0-0.3	0-0.3	0.50	0.50							
20/11252/15	20/11252/17	20/11252/18	20/11252/23							
								·		
N										
		If A	Asbestos in Soil above	is "Y", the soil is Hazard	ous Waste HP5 and HI	P7				
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		
If Asbestos in Soil abo	ve is "Y", but Asbestos	% above is "<0.1%", the	e soil is Non Hazardous	Waste. You can only u	use Asbestos % results	where loose fibres or m	l nicro pieces are only pre	sent. You cannot use		
			Asbestos % results	when visual identifiable	pieces are present.					
	If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.									

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste. Hazardous Property Thresholds Cut Off Value If cells below turn yellow and the text turns red, the samples should be classified as Hazardous Waste. <1% Corrosive HP8 0.00535 0.00490 0.00896 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Irritant HP4 <1% 0.00279 0.00219 0.00000 0.00281 0.00000 0.00000 0.00000 0.00000 0.00000 Irritant HP4 <1% 0.00472 0.00477 0.00000 0.00644 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Specifc Target Organ Toxicity HP5 ≥1% Specifc Target Organ Toxicity HP5 0.00000 ≥20% 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Specifc Target Organ Toxicity HP5 ≥1% 0.00403 0.00384 0.00000 0.00672 0.00000 0.00000 0.00000 0.00000 0.00000 Specifc Target Organ Toxicity HP5 ≥10% 0.00370 0.00140 0.00000 0.00140 0.00000 0.00000 0.00000 0.00000 0.00000 **Aspiration Toxicity HP5** 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 <0.1% Acute Toxicity HP6 (Oral) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ≥0.25 <0.1% 0.00134 0.00000 0.00000 0.00000 0.00000 0.00000 0.00107 0.00226 0.00000 Acute Toxicity HP6 (Oral) Acute Toxicity HP6 (Oral) <0.1% 0.00417 0.00398 0.00001 0.00686 0.00000 0.00000 0.00000 0.00000 0.00000 0.00848 0.00623 0.00000 0.00000 0.00000 0.00000 Acute Toxicity HP6 (Oral) <1% 0.00796 0.00000 0.00000 Acute Toxicity HP6 (Dermal) <0.1% 0.00002 0.00002 0.00000 0.00002 0.00000 0.00000 0.00000 0.00000 0.00000 Acute Toxicity HP6 (Dermal) 0.00403 0.00384 0.00000 0.00672 0.00000 0.00000 0.00000 0.00000 0.00000 <0.1% Acute Toxicity HP6 (Dermal) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 <0.1% ≥15% Acute Toxicity HP6 (Dermal) <1% 0.00006 0.00006 0.00000 0.00012 0.00000 0.00000 0.00000 0.00000 0.00000 Acute Toxicity HP6 (Inhal) 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Acute Toxicity HP6 (Inhal) 0.00411 0.00392 0.00000 0.00686 0.00000 0.00000 0.00000 0.00000 0.00000 Acute Toxicity HP6 (Inhal) <0.1% 0.00014 0.00014 0.00000 0.00014 0.00000 0.00000 0.00000 0.00000 0.00000 Acute Toxicity HP6 (Inhal) <1% 0.00840 0.00617 0.00000 0.00782 0.00000 0.00000 0.00000 0.00000 0.00000 ≥0.1% 0.00403 0.00384 0.00000 0.00672 0.00000 0.00000 0.00000 0.00000 0.00000 Carcinogenic HP7 Carcinogenic HP7 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 ≥0.1% Carcinogenic HP7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Carcinogenic HP7 Unknown TPH ≥1,000mg/kg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 with ID Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only) ≥0.01% #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! Cell only applicable if TPH >1,000mg/kg pH Corrosive HP8 pH (soil or H8 ≥11.5 6.42 0.00 6.82 7.06 0.00 0.00 0.00 0.00 0.00 leachate) pH Corrosive HP8 pH (soil or H8 ≤2 6.82 6.42 0.00 7.06 0.00 0.00 0.00 0.00 0.00 leachate) Toxic for Reproduction HP10 ≥0.3% 0.00370 0.00364 0.00000 0.00586 0.00000 0.00000 0.00000 0.00000 0.00000 Toxic for Reproduction HP10 0.00403 0.00384 0.00000 0.00672 0.00000 0.00000 0.00000 0.00000 0.00000 0.00403 0.00384 0.00000 0.00672 0.00000 0.00000 0.00000 0.00000 0.00000 Mutagenic HP11 ≥0.1% Mutagenic HP11 Unknown TPH ≥1,000mg/kg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 with ID

#DIV/0!

0.00000

0.0

0.0

0.0

#DIV/0!

0.00586

0.0

0.0

0.0

#DIV/0!

0.00000

0.0

0.0

0.0

0.00000

52254 Ditton Edge, East Malling

Please enter available data in the rows associated with the test (grey) cells. Calculation cells initially display either "0.0000" or "#DIV/0!". If any calculation cells below state "0.00000", testing has NOT been undertaken that contributes to that Hazardous Property.

TP/WS/BH			WS8	WS9	WS9	WS12					
Depth (m)			0-0.3	0-0.3	0.50	0.50					
Envirolab reference			20/11252/15	20/11252/17	20/11252/18	20/11252/23					
Ecotoxic HP14	≥25%	<0.1%	0.01903	0.01566	0.00001	0.02163	0.00000	0.0000	0.0000	0.0000	0.00000
amended v6	22570	<0.176	0.01903	0.01300	0.00001	0.02103	0.00000	0.00000	0.0000	0.00000	0.00000
Ecotoxic HP14	≥25%	<0.1% / 1.0%	0.01903	0.01566	0.00001	0.02163	0.0000	0.0000	0.00000	0.0000	0.00000
amended v6											
Ecotoxic HP14	≥25%	<0.1% / 1.0%	1.90310	1.56550	0.00120	2.16250	0.00000	0.00000	0.00000	0.00000	0.00000
amended v6											
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%		0.00000000	0.00000000	0.00000100	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.000015%		0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%		0.0000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000

If other contaminants need adding to Haswaste, please contact Envirolab.