

Ground and Environmental Services Limited

Unit 2 Montpelier Business Park Dencora Way Ashford Kent **TN23 4FG** 01233 646237

Land off Sheppey Way, lwade, **ME9 8GN**

Geo-Environmental Investigation

On Behalf of Middlefields Limited

Document Reference: 12775 March 2022

Site: Land off Sheppey Way, Iwade, ME9 8GN

Document Reference No: 12775

Quality Management

Prepared by:	PJ/JF/JM
Reviewed by:	КМ
Authorised by:	KM
Date	March 2022
Revision	0

Table of Contents

1	INTRO	DUCTION	1
2	SITE L	OCATION AND LAYOUT	1
3	ENVIR	CONMENTAL SETTING	1
	3.1	GEOLOGY	1
	3.2	GROUNDWATER	2
	3.3	RADON	2
4	INTRU	ISIVE INVESTIGATION	3
	4.1	FIELDWORK	3
	4.2	GROUNDWATER	4
5	LABO	RATORY TESTING	5
	5.1	GEOTECHNICAL TESTING	5
	5.2	ANALYTICAL TESTING	5
6	GROU	ND CONDITIONS	6
7	ENGIN	NEERING DESIGN	8
	7.1	FOUNDATION DESIGN OPTIONS	8
	7.2	GROUND FLOORS	9
	7.3	TEMPORARY WORKS	9
	7.4	ROADS/HARDSTANDING	9
	7.5	CHEMICAL ATTACK ON BURIED CONCRETE	9
8	GROU	IND CONTAMINATION ASSESSMENT	. 10
_	8.1	SOIL QUALITY	
_	3.1.1	Toxic Metals	
	3.1.2	Phytotoxic Metals	
	3.1.3	Organic Compounds	
	3.1.4	Inorganic Compounds	
8	3.1.5	Asbestos	. 12
	8.2	SOIL GAS	. 12

9	CONT	AMINATION RISK ASSESSMENT	. 14
	9.1	CONTAMINANT SOURCES	. 15
	9.2	RISK TO HUMAN HEALTH	. 15
	9.3	RISKS TO WATER RESOURCES	. 16
	9.4	RISKS TO PLANTS	. 17
	9.5	RISKS TO BUILDINGS & SERVICES	. 17
	9.6	GAS RISK ASSESSMENT	. 17
	9.7	WASTE DISPOSAL	. 18
10	CONC	EPTUAL SITE MODEL	. 19
11	CONC	LUSIONS AND RECOMMENDATIONS	. 22

Figures

- Exploratory Hole Location Plan SPT v Depth Profile 1.
- 2.
- SPT N60 v Depth Profile 3.

Appendices

- Proposed Site Layout Plan 1.
- Window Sample Logs and Installation Details 2.
- 3.
- Dynamic Cone Penetrometer Test Results Soil Gas and Groundwater Level Monitoring 4.
- 5.
- 6.
- Laboratory Test Results
 Analytical Test Results
 Guidelines on Contaminant Levels 7.

1 INTRODUCTION

Ground and Environmental Services Ltd (GES) was commissioned Middlefields Limited (The Client) to undertake a Geo-Environmental Investigation on a proposed redevelopment site at Land off Sheppey Way, Iwade ME9 8GN.

It was understood that the proposed redevelopment of the site would comprise the construction of 14 bungalows and chalet bungalows together with 21 communal car parking spaces and amenity space (See Appendix 1 for Proposed Site Layout Plan).

The principal objectives of the ground investigation were to provide geotechnical recommendations to aid foundation, ground floor slab, pavement and temporary works design for the proposed development.

In addition, contamination testing and a soil gas and groundwater survey were carried out to provide a preliminary assessment of contamination issues based on current Contaminated Land Legislation.

2 SITE LOCATION AND LAYOUT

The site is located in the village of Iwade, in a predominantly rural setting, immediately to the West of Sheppey Way and is centred on approximate ordnance survey grid reference centre: TQ 899 671.

Access to the development site was gained from the East via Sheppey Way and is roughly rectangular in shape.

At the time of the ground investigation, the site appeared to be disused agricultural land.

Features bordering the site are as follows:

- To the North and Northwest, the site is bound by residential buildings
- To the South and West, an access track and agricultural land
- To the East, Sheppey Way.

3 ENVIRONMENTAL SETTING

3.1 GEOLOGY

Reference to the British Geological Survey 1:50,000 scale geological map of the area indicates that the geology underlying comprises of soils of the London Clay Formation, with superficial Head deposits anticipated throughout the site.

The geological memoir for the area described these strata as follows:

Head Deposits

Head is poorly sorted and poorly stratified, angular rock debris and/or clayey hillwash and soil creep, mantling a hillslope and deposited by solifluction and gelifluction processes. Solifluction is the slow viscous downslope flow of waterlogged soil and other unsorted and unsaturated superficial deposits. The term gelifluction is restricted to the slow flow of fluidized superficial deposits during the thawing of seasonally frozen ground. The flow is initiated by meltwater from thawing ice lenses. Polymict deposit: comprises gravel, sand and clay depending on upslope source and distance from source. Locally with lenses of silt, clay or peat and organic material.

London Clay Formation

The London Clay mainly comprises bioturbated or poorly laminated, blue-grey or grey-brown, slightly calcareous, silty to very silty clay, clayey silt and sometimes silt, with some layers of sandy clay. It commonly contains thin courses of carbonate concretions ('cementstone nodules') and disseminated pyrite. It also includes a few thin beds of shells and fine sand partings or pockets of sand, which commonly increase towards the base and towards the top of the formation. At the base, and at some other levels, thin beds of black rounded flint gravel occurs in places. Glauconite is present in some of the sands and in some clay beds, and white mica occurs at some levels.

3.2 GROUNDWATER

Reference to the British Geological Survey 1:50,000 scale Aquifer Designation Dataset, shows the site to be set upon Unproductive Strata, in both the superficial Head deposits, and the underlying London Clay Formation.

Unproductive Strata are rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.

The site is not located within a Groundwater Source Protection Zone.

3.3 RADON

Reference to the National Radiological Protection Board's "Radon Atlas of England and Wales" indicated that less than one percent (<1%) of houses within the 5 km square which includes the site have radon concentrations above the action level of 200 Bq/m³. The site is therefore not located within a "Radon Affected Area" and therefore no special measures need be incorporated into buildings.

4 INTRUSIVE INVESTIGATION

4.1 FIELDWORK

The site works were carried out between the 4th February and the 18th February 2022 and comprised the following:

- Window Sampling
- Dynamic Cone Penetrometer Testing
- Soil Gas and Groundwater Level Monitoring

The positions of the above works on the site are indicated on Figure 1, Exploratory Hole Location Plan.

Window Sample Holes

Eight window sample holes (WS1 to WS8) were excavated to depths ranging from 3.0m to 4.0m using a track mounted Premier 110 window sampling rig.

The soils and materials encountered in the holes were logged and representative samples recovered for laboratory analysis. Standard penetration tests were also carried out in the window sample holes using either the split spoon or solid cone attachment as appropriate to the ground conditions encountered.

Window sample holes WS1, WS2, WS3 and WS7 were completed with 35mm diameter groundwater monitoring standpipes installed to the full depth of the test hole, which was 4.0m. Window sample holes WS4, WS5, WS6 and WS8, which were excavated to a depth of 3.0m, were backfilled with arisings and surface coverings made safe. Window sample logs and installation details are presented in Appendix 2.

Dynamic Cone Penetrometer Testing

Eight dynamic cone penetrometer (DCP1 to DCP8) tests were undertaken in the proposed new driveway/car parking areas. The dynamic cone penetrometer (DCP) uses an 8 kg hammer dropping through a height of 575 mm and a 60° cone having a maximum diameter of 20 mm. Penetration depth is recorded after every blow. The DCP is a Penetrometer device used to provide a measure of in situ CBR. Blow count readings were converted to an equivalent CBR, which is displayed in the results tables presented in Appendix 3. The TRRL equation was used to calculate the equivalent CBR value from the DCP results.

Soil Gas and Groundwater Level Monitoring

A soil vapour survey was undertaken across the site and comprised the monitoring of the atmosphere within the window sample hole standpipes installed at the site. Portable gas monitoring equipment (GA 5000) was used to monitor the standpipe for concentrations of carbon dioxide (CO₂), methane (CH₄) and oxygen (O₂).

The gas and groundwater level monitoring results are presented in Appendix 4.

4.2 GROUNDWATER

Groundwater was generally not recorded during the fieldwork however was recorded as per the table below, as part of the subsequent post-fieldwork monitoring.

	08/02/2022	11/02/2022	18/02/2022
WS Ref.	Depth to Water (mbgl)	Depth to Water (mbgl)	Depth to Water (mbgl)
WS1	2.10	1.90	1.95
WS2	1.70	1.30	2.15
WS3	1.70	1.60	1.75
WS7	1.90	1.80	1.85

It should be noted that groundwater levels may vary due to seasonal fluctuations in rainfall, but in the shorter term, can be affected by antecedent weather conditions or other causes.

5 LABORATORY TESTING

5.1 GEOTECHNICAL TESTING

The following range of laboratory tests were scheduled, and the results are presented in Appendix 5.

- *i.* Determination of Natural Moisture Content (17 no.).
- *ii.* Determination of Atterberg limits (17 no.).
- iii. Determination of Particle Size Distribution (1 no).
- iv. Determination of pH (12 No.). See Appendix 6.
- v. Determination of water soluble sulphate (12 No.). See Appendix 6.

5.2 ANALYTICAL TESTING

Eight soil samples were selected and scheduled for chemical analysis which was undertaken by DETS Ltd. All soil samples were analysed for a general screening suite of contaminants considered appropriate to the current usage and past history of the site and surrounding area.

Toxic Metals Phytotoxic Metals		Inorganic Compounds	Organic Compounds	
Arsenic	Water Soluble	Water Soluble	Total Polyaromatic	
Cadmium	Boron	Sulphate	Hydrocarbons (PAH)	
Chromium	Copper	pH	Mineral oils	
Lead	Nickel	Asbestos	Total Petroleum	
Mercury	Zinc		Hydrocarbons (TPH)	
Nickel			, ,	
Selenium				

Two samples were analysed for the presence of Organochlorine Pesticides, considered appropriate based on the site's use as farmland. In addition, a composite sample of arisings was prepared and submitted for analysis in accordance with the Environment Agency's waste acceptance criteria (WAC) for the off-site disposal of soils.

Soil samples were stored in appropriate containers as specified within BS10175. The containers comprised of 1 kg capacity plastic containers with fitted lids.

Where organic compounds were to be determined, inert containers, which prevent loss by absorption, or volatilization, i.e. wide-mouthed amber glass containers, were used.

Samples were stored in appropriately cooled cool boxes and were transported to the laboratory as quickly as possible in order to minimise any potential for chemical and biological changes to take place.

The results of the analytical testing are presented in Appendix 6.

6 GROUND CONDITIONS

This ground investigation found Made Ground over soils typical of superficial Head Deposits.

Made Ground

Made Ground was encountered in all window sampling holes and comprised dark brown sandy to silty clay with fragments of asphalt and red brick. Frequent fine roots were present in all locations.

Head Deposits

Soils typical of Head Deposits were found in all window sampling holes and proven to the base of the holes which terminated at depths ranging between 3.0m and 4.0m.

The soil sequence comprised predominantly soft to firm silty and very silty clay. Within the silty clay soils were gravels comprising hard chalk and coarse to cobble-sized angular and sub-angular flint. Slightly clayey silty sandy gravel was found in WS2, from a depth of 3.6m to the base at 4.0m.

Standard penetration tests carried out within the Head Deposits recorded N values in the range 4 to 26 (soft, firm and very stiff) with the majority of test results being in the range 4 to 9 (soft to firm). See Figure 2 for a plot of SPT vs depth profile and Figure 3 for a plot of SPT N_{60} vs depth profile.

Tactile observations recorded the clays soils as soft to firm becoming firm.

Classification testing on the predominant cohesive soils recorded clay soils of low to intermediate plasticity with plasticity indices in the range 12 to 23% measured. The test results indicated that the soil would have a low to medium shrink/swell potential with the majority classified as low shrink/swell potential.

Particle size distribution testing on the granular soils found in WS2 between 3.6m and 4.0m recorded slight clayey silty sandy gravel with a fine fraction of 20.2% recorded.

Based on the soil descriptions and the in situ and laboratory testing carried out, the following parameters would be considered appropriate for the Head Deposits:

Cohesive (clays with mudstones);

Undrained Shear Strength* $S_u = 35 \text{ kN/m}^2 \text{ at } 1.0 \text{ m soft, low strength.}$

increasing linearly to;

 $S_u = 45 \text{ kN/m}^2 \text{ below } 1.5 \text{ m firm, medium strength}$

Very stiff, very high strength.

Coefficient of compressibility* $m_V = 0.28 \text{ m}^2/\text{MN}$ at 1.0 m increasing to 0.22

m²/MN at 1.5 m (medium compressibility)

Bulk density $\rho_{B} = 18 - 19 \text{ kN/m}^3$

Volume Change Potential (VCP) Low

Permeability Low

Frost Susceptible Yes (locally)

CBR Poor

^{*} Derived from SPT N values

7 ENGINEERING DESIGN

7.1 FOUNDATION DESIGN OPTIONS

At the time of reporting, applied structural loads were unknown. However, it is known that the proposed redevelopment of the site would comprise the construction of 14 bungalows and chalet bungalows. For preliminary foundation design purposes a maximum line load of 60kN/m run has been adopted.

In deliberation of suitable foundation options consideration was given to the geotechnical hazards and risks as presented below:

Geotechnical Hazard	Qualitative Risk & Consequences	Possible Risk Reduction Measures	
Existing underground structures such as service runs and old footings.	Low Implication for foundation depth and economic feasibility of shallow foundations.	New foundations to be constructed in undisturbed ground or alternatively disturbed ground to be removed and replaced with suitable engineering fill.	
Shrinkage/swelling of foundation soils due to action of tree roots.	Low to Medium Foundation movement and cracking of brickwork.	Follow NHBC guidance on building near trees for low shrink/swell potential soils	
Variations in stiffness of ground below foundation depth that could give rise to unacceptable total and differential settlement.	Medium Buildings particularly sensitive to differential settlement. Would result in cracking of superstructure if conventional brickwork or brick cladding.	Calculate likely magnitude of settlement and determine if within acceptable tolerances. Make foundations act as reinforced beams. Include movement joints if and where necessary.	

Based upon the ground conditions found consideration has been given to founding the proposed new structures on conventional shallow foundations.

Shallow Strip Foundations

Foundation Depths

Strip footings founded within the Head Deposits will provide a suitable foundation solution for the proposed new structures. A minimum foundation depth of 1.0m is recommended.

Allowable Bearing Pressure and Foundation Sizing

Based on field observations, in situ testing and laboratory test results, a maximum allowable bearing of 80kN/m² is recommended for foundations placed at a minimum depth of 1.0m. At a depth of 1.5m a maximum allowable bearing of 100kN/m² is recommended for shallow foundations.

Adopting a line load of 60kN/m run minimum foundation widths of 0.75m and 0.6m are recommended for founding depths of 1.0m and 1.5m respectively.

Settlement

The results of the calculations indicated total settlements would be in the order of 25mm for foundations placed at 1.0m and 20mm for foundations placed at 1.5m. Approximately 10% of this settlement would be immediate and therefore 'built out' during construction. The remainder would be long term consolidation settlement.

7.2 GROUND FLOORS

NHBC guidance advises that suspended ground floors should be adopted when the plasticity index (PI) of the founding soils is greater than 10%.

Based upon the results of this ground investigation it is recommended that suspended ground floor slabs are adopted.

7.3 TEMPORARY WORKS

Excavations in excess of 1.2m depth may be required in connection with the proposed development on this site. If there is a requirement for personnel to enter into excavations, then the need for trench side support should be considered for any depth of excavation and, therefore, appropriate equipment should be available on site prior to excavation proceeding. A site specific risk assessment should be carried out where man entry into excavations is required.

The base of foundation excavations should be inspected and any soft loose, organic or otherwise deleterious material at foundation level removed and replaced with lean mix concrete. The soils encountered will be liable to softening/loosening when exposed to surface water infiltration. In order to avoid deterioration of the prepared formation the base of foundations should be blinded with concrete as soon as practical after excavation and particularly if there is delay before placing foundation concrete.

7.4 ROADS/HARDSTANDING

The results of in situ DCP tests indicated CBR values in the range 2 to 25% although below a typical formation level of 0.45m CBR values were generally in the range 4 to 9%.

For preliminary design purposes it is recommended that a CBR value of 4% should be adopted. The soils encountered during this ground investigation are considered frost susceptible therefore road construction should have a minimum of thickness of 450 mm.

7.5 CHEMICAL ATTACK ON BURIED CONCRETE

The results of the chemical testing indicated a concentration of water-soluble sulphate in neutral to slightly alkaline with a range between 6.8 and 7.9 pH units.

In accordance with BRE Special Digest 1 (SD1:2005) entitled 'Concrete in Aggressive Ground' a design sulphate class for the site of DS-1 is recommended. Using SD1 an ACEC (Aggressive Chemical Environment for Concrete) class of AC-1 is recommended.

8 GROUND CONTAMINATION ASSESSMENT

The current guidelines used for this contamination assessment are presented within Appendix 7.

The contaminant concentrations encountered as part of this investigation have been compared against either Land Quality Management Generic Assessment Criteria (LQM GAC) for a residential development, the Chartered Institute of Environmental Health's (CIEH) Suitable for Use Levels (S4USL), or where available against newly published Category 4 Screening Levels (C4SLs) for a Residential (with home-grown produce) end use. Where neither guidelines have limit values, Contaminated Land Exposure Assessment (CLEA) framework guideline limit values have been assessed.

Category 4 Screening Levels (C4SLs) have currently been published for six substances as per the table below.

Substance	Residential (with home- grown produce)	Residential (without home- grown produce)	Allotments	Commercial	Public Open Space 1	Public Open Space 2
Arsenic	37	40	49	640	79	170
Benzene	0.87	3.3	0.18	98	140	230
Benzo(a)Pyrene	5.0	5.3	5.7	77	10	21
Cadmium	22	150	3.9	410	220	880
Chromium VI	21	21	170	49	21	250
Lead	200	310	80	2300	630	1300

All concentrations expressed in mg/kg

This table should be read in conjunction with the Final C4SL R&D Report

8.1 SOIL QUALITY

In terms of any proposed redevelopment of the site, the results of the analysis of the selected soil samples recovered during the site investigation indicated that the concentrations of *metals* and *metalloids* considered to be potentially toxic to humans were below the respective guideline values in all samples tested.

Organic contamination across the site was low and concentrations which may be considered to pose an unacceptable risk to human health should any viable pathway exist were not encountered.

Concentrations of organochlorine pesticides were generally below the detection limit of the analytical method used.

Asbestos contamination was not encountered within any of the soil samples analysed.

A comprehensive description of the soil quality as measured as part of the intrusive site investigation is given below.

8.1.1 Toxic Metals

Concentrations of toxic metals arsenic, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium, and zinc were all below their respective soil guidance values for either a residential development under the CLEA/LQM GAC guidelines and the C4SL guideline values for residential (with home-grown produce) where appropriate in all soil samples tested.

8.1.2 Phytotoxic Metals

Concentrations of phytotoxic metals copper, zinc and nickel were compared against the maximum permissible concentration in the Sewage Sludge (Use in Agriculture) Regulations 1989.

Concentrations of copper, nickel, and zinc were found to be below the maximum permissible concentration for use on soils for the relevant pH level in all of the analysed soil samples.

8.1.3 Organic Compounds

Polycyclic Aromatic Hydrocarbons (PAH)

Concentrations of total PAH were significantly below the inert waste acceptance criteria of 100 mg/kg as detailed in the Landfill (England and Wales) (Amended) Regulations 2004 in all of the samples tested.

Benzo(a)pyrene (B(a)P)

All B(a)P concentrations were below the C4SL guideline limit value of 5.0 mg/kg for a residential (with home-grown produce) end use.

All other speciated PAH compounds were also below their respective guideline values.

Total Petroleum Hydrocarbons

Concentrations of TPH were low and were significantly below the inert waste acceptance criteria of 500 mg/kg as detailed within the Landfill (England and Wales) Regulations 2004 and also within the UK Water Industry Research (UKWIR) in all soil samples tested.

Generic Assessment Criteria (GAC) for total petroleum hydrocarbons according to both their molecular weight and chemical structure and also for a range of soil organic matter (SOM) content values have been derived using CLEA software. The LQM CIEH GACs are presented according to their soil organic matter content and proposed end use of the land.

Comparison of the measured TPH data with the worst-case scenario constituent compounds and their GAC limit values was made to provide a conservative assessment of the organic contamination. The maximum TPH concentration recorded on site during the site investigation was 19 mg/kg within WS8 (0.3 m) comprising 11 mg/kg within the C21-C35 range which is significantly below the absolute worst-case relevant GAC limits for C21-C35 aromatic compounds of 1100 mg/kg.

The TPH concentrations recorded on site within WS8, and hence the other locations across the site, were therefore below the relevant GAC limit for their respective range and would therefore not be considered to pose a significant risk of significant harm to human health.

Pesticides

Concentrations of Organochlorine Pesticides were generally below the detection limit of the analytical method used. DDE was detected in a trace amount of 0.05 mg/kg. Concentrations of DDD and DDT were below the limit of detection for the analytical method used. No limit values are set in the UK for organochlorine pesticides in soils, however the concentrations detected within the near surface soils on site are considered to be low when compared with limit values set by EU countries, notably the Netherlands, which have a limit value of 2.3 mg/kg for DDE, 34 mg/kg for DDD and 1.7 mg/kg for DDT, in soils.

8.1.4 Inorganic Compounds

Concentrations of water-soluble sulphate close to surface were found to range from below the analytical detection limit of 10 mg/l to 63 mg/l (as SO_4) within the analysed soil samples. The pH values were very slightly acidic to neutral with values ranging between 6.8 and 7.8 units.

8.1.5 Asbestos

Asbestos screening of the soil samples did not identify any Asbestos Containing Material (ACM).

8.2 SOIL GAS

Three gas monitoring visits were undertaken between the 8th February and the 18th February 2022.

During the visits, a soil vapour survey was undertaken which comprised the monitoring of the atmosphere within the installed Window Sample Hole standpipes. Portable gas monitoring equipment (GA 5000) was used to monitor the standpipes for concentrations of carbon dioxide (CO₂), methane (CH₄) and oxygen (O₂).

For determining the gas protection measures which may be required in low rise buildings with a beam and block floor there is published guidance from the NHBC for use on

residential developments which utilises a traffic light system of classification. For larger buildings the guidance in CIRIA 665 and BS8485 is used.

Reference has also been made to the British Standard Code of Practice BS8485:2015, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings and regard has been given to the recommendations presented therein. The processes set out in BS8485 represent good practice and is based on the CIRIA C665 document.

In addition CIRIA document C735, Good practice on the testing and verification of protection systems for buildings against hazardous ground gases has also been referenced.

The results obtained from the short-term soil gas monitoring undertaken indicated that slightly elevated concentrations of soil gas *were present* in the soils underlying the site. The soil gas results are attached at Appendix 4.

The results obtained from the soil gas survey undertaken indicated that elevated carbon dioxide concentrations were recorded within the void of WS2 during the second and third monitoring periods which was in excess the action level of 5%. It should be noted that the remaining voids did not indicate elevated carbon dioxide concentrations during the monitoring visits.

Methane concentrations were below the action level of 1% at all locations.

Measurement of gas flow indicated a maximum gas flow rate of 0.1 l/hr.

9 CONTAMINATION RISK ASSESSMENT

This risk assessment has been undertaken with due regard to the advice relating to groundwater as provided in the Environment Agency's "Methodology for the Derivation of Remedial Targets for Soil and Groundwater to Protect Water Resources", the advice provided in the Contaminated Land (England) Regulations 2000, and the associated statutory guidance. The guidance defines contaminated land as any land that is in such a condition that by reason of substances in, on or under the land:

- significant harm is being caused or there is a significant possibility of such harm being caused; or
- pollution of controlled water is being or is likely to be caused.

This definition is based on the principles of risk assessment defined as a combination of the probability (or frequency) of occurrence of a defined hazard and the magnitude (including the seriousness) of the consequences. Central to the risk assessment process is the concept of pollutant linkage, that is a linkage between a contaminant and a receptor by means of a pathway.

Statutory definition	Statutory definitions relating to pollution linkage.						
Contaminant	"a substance which is in, on or under the land and which has the potential to cause harm or to cause pollution of controlled waters."						
Receptor	"a living organism, a group of living organisms, and ecological system or a piece of property" which meets given criteria. "controlled waters which are, or could be, polluted by a contaminant".						
Pathway	"one or more routes or means by, or through, which a receptor: • is being exposed to, or affected by, a contaminant, or • could be so exposed or affected".						

The relationship between these components is discussed below in order to identify the existence of any source-pathway-receptor linkage on the site, and hence the potential risks associated with any contamination. This risk assessment is based on the proposed construction of 14 bungalows and chalet bungalows together with 21 communal car parking spaces and amenity space.

The significance of the risks to the receptors/targets identified is based on an evaluation of the potential pathways between the contaminant source and receptors based on a residential with plant uptake end use of the site.

Potential receptors/targets at the site and in the area in which the site is located include:

- future users and the public;
- construction/maintenance workers;
- groundwater resources;
- underground services in and around the site;
- planting in areas of private gardens and soft landscaping;

9.1 CONTAMINANT SOURCES

The following general potential contaminant sources have been identified at the site and in the surrounding area:

Potential Source	Source Description	Principal Contaminants of Concern	
	Near surface in-fill/ reworked material of unknown origin.		
Current and Historic Site Use	Farmland	Pesticides	
	Near surface made ground of unknown origin.	Ground Gases (Methane and Carbon Dioxide)	
Current and Historic Surrounding Land Use	Farmland	Pesticides	

No visual or olfactory evidence of organic contamination was noted during the intrusive investigation.

The analytical testing of soils retrieved as part of the intrusive investigation did not generally reveal any significantly elevated contaminant concentrations present above their respective guideline values. The risks associated with these contaminants are discussed below.

9.2 RISK TO HUMAN HEALTH

Toxic Metals

Concentrations of toxic metals arsenic, cadmium, chromium, lead, mercury, nickel, selenium, and zinc were all below their respective soil guidance values for a residential (with plant uptake) end use in all samples tested in this site investigation, therefore the risks to human health from these contaminants is considered to be low.

Organic Compounds

Concentrations of the organic compounds total PAH and total TPH, were low across the site and would therefore not be considered to pose a significant risk of significant harm to human health.

Concentrations of Organochlorine Pesticides were low across the site and would therefore not be considered to pose a significant risk of significant harm to human health.

Inorganic Compounds

Asbestos containing material (ACM) was not encountered at the site. Therefore the risk to human health is considered low.

On the balance of the toxicological risks posed by the ground contamination encountered as part of the intrusive investigation undertaken by GES, it is considered that the potential risks to site workers and future occupants could be adequately controlled as follows:

Site Workers

- Provision of appropriate personal protective equipment and hygiene facilities.
- Good working practice in line with current legislation when safely handling and disposing of asbestos material.
- Provision of appropriate dust suppression, to minimise the generation of potentially contaminated suspended particulates during site works.

Future Occupants

Elevated levels of contaminants which could pose a risk to future occupants have not been encountered in the soils recovered as part of the intrusive site investigation.

9.3 RISKS TO WATER RESOURCES

The geology underlying the site comprises the London Clay Formation overlain by superficial Head Deposits, both of which are designated as Unproductive Strata. The site is not situated within a Groundwater Source Protection Zone.

Significant levels of potentially soluble and therefore mobile organic contaminant sources were not measured on site within the samples tested. In the absence of any significant potential contaminative source, it is therefore considered the risks to groundwater and surface water resources are low.

9.4 RISKS TO PLANTS

The concentrations of potentially phytotoxic metals copper, zinc and nickel were all below their respective maximum permissible concentrations used in the Sewage Sludge (Use in Agriculture) Regulations 1989 for their relevant soil pH.

Furthermore, there are no signs of phytotoxic stress in any of the vegetation noted across the site.

Therefore, the risk to plants is considered low. Should additional growth media be required this may need to be imported and its suitability confirmed by means of some validation testing.

9.5 RISKS TO BUILDINGS & SERVICES

The risks to buried services from organic contamination such as TPH, which can degrade/permeate plastics and other polymer materials used to supply potable water is considered to be negligible.

Based on current guidance, the need to protect incoming water supplies, e.g. by the use of barrier pipes, is unlikely given the contaminant levels encountered as part of this investigation however it is always advisable that confirmation from utility suppliers should be sought.

9.6 GAS RISK ASSESSMENT

The levels of soil gas underlying the site have been monitored as part of a short-term soil gas monitoring programme carried out across the site between 8th February and 18th February 2022. The results obtained from the soil gas survey indicate that slightly elevated levels of soil gas, which may require gas protection measures to be incorporated into the development, are present on site. No significantly elevated gas flow rates were recorded during the monitoring.

The highest carbon dioxide concentration encountered on site during this current investigation was measured in WS2 at 7.5% which is in excess of the relevant guideline limits of 5%. No significantly elevated methane concentrations were recorded with all concentrations being below the detection limit of the gas analyser.

Measurement of gas emission rates indicates that no significant gas flows are present. The maximum gas flow rate measured on site was 0.1 l/hr which was measured using the GA5000 built-in flow meter.

Based on BS 8485:2015, we have assessed the site based on the gas monitoring undertaken as part of the site investigation in order to calculate a Characteristic Gas Situation (CS).

Based on the worst-case gas characteristic situation, the worst-case implied CS derived by combining the maximum observed concentrations from different gas monitoring standpipes during any monitoring event and a worst-case flow rate of 2.0 l/h are as follows.

Flow Rate (I/h)	CH4 (%)	CO2 (%)	GSV – CH4 (I/h)	GSV – CO2 (I/h)	Implied CH4 CS	Implied CO2 CS
2.0	0.1	7.5	0.001	0.15	1	1

On the basis of the measurements in the table above, the GSV is taken to be 0.15 l/h, which is the worst case for methane and carbon dioxide. A GSV of 0.15 l/h lies within the GSV values for **CS2** (0.07 to <0.7 l/h) which has a low hazard potential.

BS 8485:2015 enables the minimum level gas protection (score) for the site or zones to be determined based on the determined CS and the type of proposed building. Given the proposed end use of the site, a high-risk Type A building has been used for calculating the appropriate gas protection score.

Given that the site has an implied CS2, the minimum gas protection score required for a Type A building is 3.5, which means that gas protection measures would be required as part of the proposed development based on current gas concentrations.

9.7 WASTE DISPOSAL

Although no suspected asbestos containing materials were observed during the site investigation, should any suspected asbestos materials be encountered later on, it should be disposed of to a suitably licensed waste facility. Where dismantling of asbestos is required this should be done by a suitably qualified person or persons. All certification and waste transfer documentation should be retained by the client.

Should an excess volume of soil be required to be disposed of off-site then a waste classification may be required. For a waste classification to be undertaken, materials may need to be subjected to leachate testing which would give an indication to the soluble component of contaminants and, therefore those most toxic to the environment in the waste. The classification will then allow the appropriate disposal pathway to a suitably licensed disposal facility to be determined.

Waste acceptance criteria (WAC) leachate testing was carried out on a composite soil sample from the site. The results are attached at Appendix 6 and show that levels in excess of the inert limit values were not noted within the composite samples of soils. As a preliminary waste assessment and based on the results of materials tested to date, it is considered that the majority of any surplus soils requiring off-site disposal would be classified as EWC 17 05 04 non-hazardous and acceptable at a waste facility licenced to accept inert material.

10 CONCEPTUAL SITE MODEL

A conceptual site model (CSM) is a system diagram identifying contaminant sources, routes of exposure (pathways), and which receptors are affected by contaminants moving along those pathways.

The model is produced to identify the zones of the site with different potential contaminations characteristics (e.g. whether contaminants in the soil are likely to be on the surface or at depth, distributed over an entire area or in localised 'hot spots').

The conceptual site model presented in the table below is based on the findings of the site investigation undertaken.

Source	Pollutant		Pathway	Hazard	
Contaminated ground	Metals, organic (hydrocarbons) could be present	→	Direct contact, ingestion, inhalation.	Health risks including skin irritation.	
			Surface run off.	Lateral movement to surface watercourses.	
			Leaching/ Dispersion.	Downward migration to groundwater.	
			Uptake by plants.	Phytotoxic effects.	
			Direct contact	Aggressive chemical attack	

	Receptor	Observations/ Recommendations	Assessed Risk
→	Humans: site workers	Normal health and safety precautions. No significantly elevated contaminant concentrations encountered.	Low.
→	Aquatic resources, ecology and subsequent users including humans.	Significant contamination not encountered on site and there are no surface water courses in immediate vicinity of the site.	Low
→	Aquatic resources – Groundwater, abstraction wells) / surface waters.	Significant mobile contamination not present in soils.	Low
→	Soft landscaped areas / plants.	Significant contamination not present in soils.	Low
→	Building structures and services	It is considered that protection of services is unlikely to be required on this site however confirmation advice should be sought from Statutory Providers.	Low

Source	Pollutant		
Liquid contaminant sources	Diesel, Petrol and Oils.		
Asbestos	Asbestos fibres within made ground and waste on site		
Landfill, madeground,	Ground Gases (CO ₂ , CH ₄)		
Redundant Waste, Demolition Waste			

	Pathway	Hazard				
•	Direct contact; ingestion, inhalation.	Health risks including skin irritation. Lateral and vertical migration of contaminants.				
•	Inhalation.	Health risks including asbestosis, mesothelioma, and lung cancer.				
	Inhalation and ingress into buildings	Asphyxiation and explosions				
	Dermal Contact/ingestion. Potential for migration via surface water run-off	Health Risks				

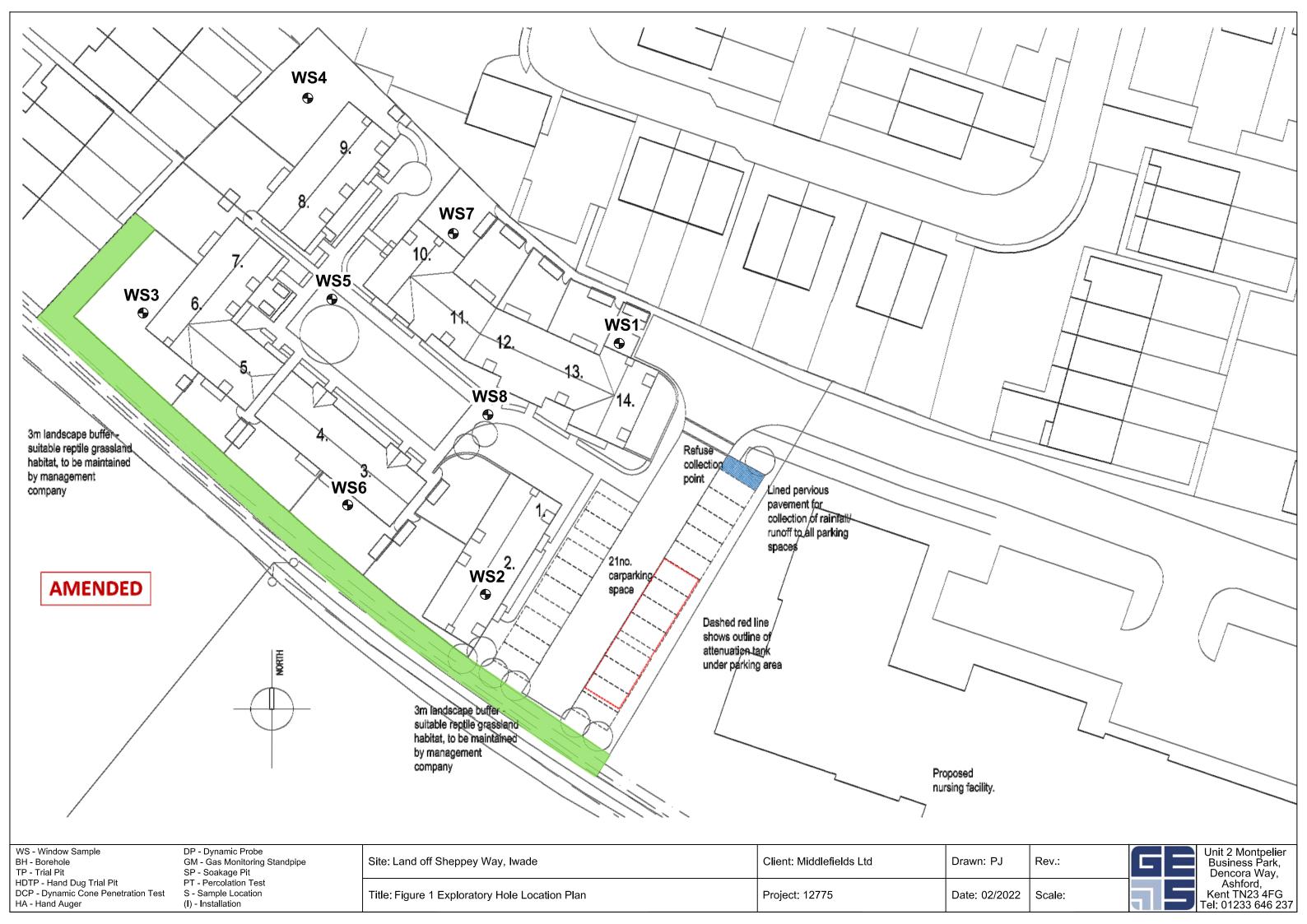
Receptor	Observations/ Recommendations	Assessed Risk	
Humans: site workers. Groundwater and surface water.	The intrusive ground investigation proved no significant contamination, and no liquid contamination sources were identified on site.	Low	
Humans: site workers and future occupants.	Asbestos has not been identified on site. Appropriate PPE should be worn during site works.	Low	
Buildings/humans/ future site users	Slightly elevated ground gases have been noted on site. Gas protection measures are recommended in new development.	Low, following installation of gas protection measures as recommended in this report.	
Humans: Site workers	Any unwanted waste on site is to be removed from site during site preparatory works and disposed of in accordance with current legislation. Normal health and safety precautions.	Low	

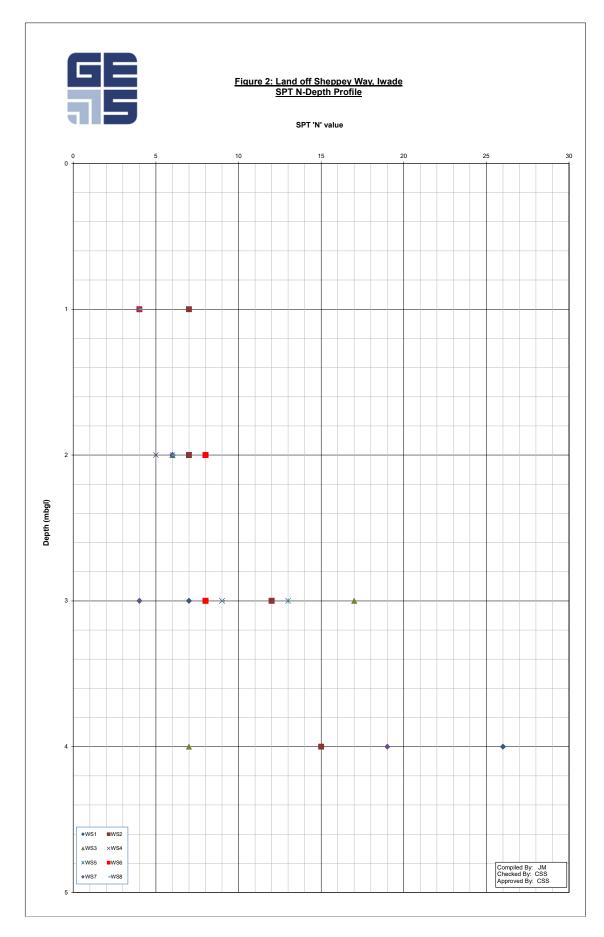
11 CONCLUSIONS AND RECOMMENDATIONS

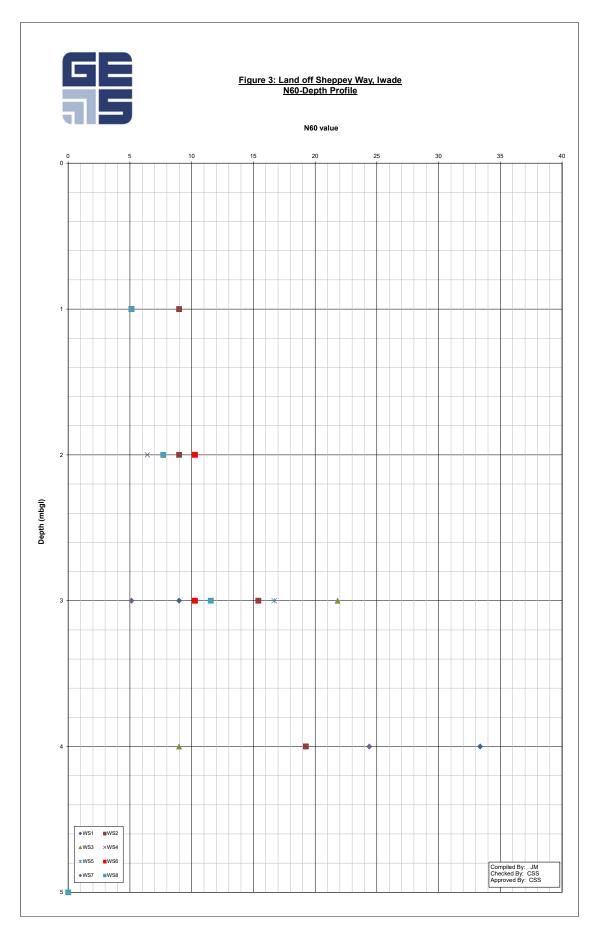
Based on the site investigation, intrusive works and subsequent data assessment, the following conclusions and recommendations have been drawn in respect of the site known as Land off Sheppey Way, Iwade, ME9 8GN.

Geotechnical

- The ground investigation found soils typical of Head Deposits beneath a surface layer of Made Ground.
- The proposed development was understood to comprises the construction of low rise bungalows and chalet bungalows. For preliminary foundation design purposes, a maximum line load of 60kN/m run was adopted.
- The Head Deposits was identified as a suitable founding stratum.
- Based on field observations an allowable bearing pressure of 80kN/m² is recommended for foundations placed at a minimum depth of 1.0m and an allowable bearing pressure of 100kN/m² was recommended for foundations placed at a minimum foundation depth of 1.5m.
- It was therefore recommended that minimum foundation widths of 0.75m and 0.6m are adopted for house foundations placed at depths of 1.0m and 1.5m respectively.
- The results of the settlement calculations predicted total settlements would be 25mm and 20mm for foundations placed at 1.0m and 1.5m respectively.
- Suspended ground floor slabs were recommended.
- For preliminary design purposes it is recommended that a CBR value of 4% should be adopted.
- In accordance with BRE Special Digest 1 (SD1) a design sulphate class for the site of DS-1 and a class of AC-1 is recommended.

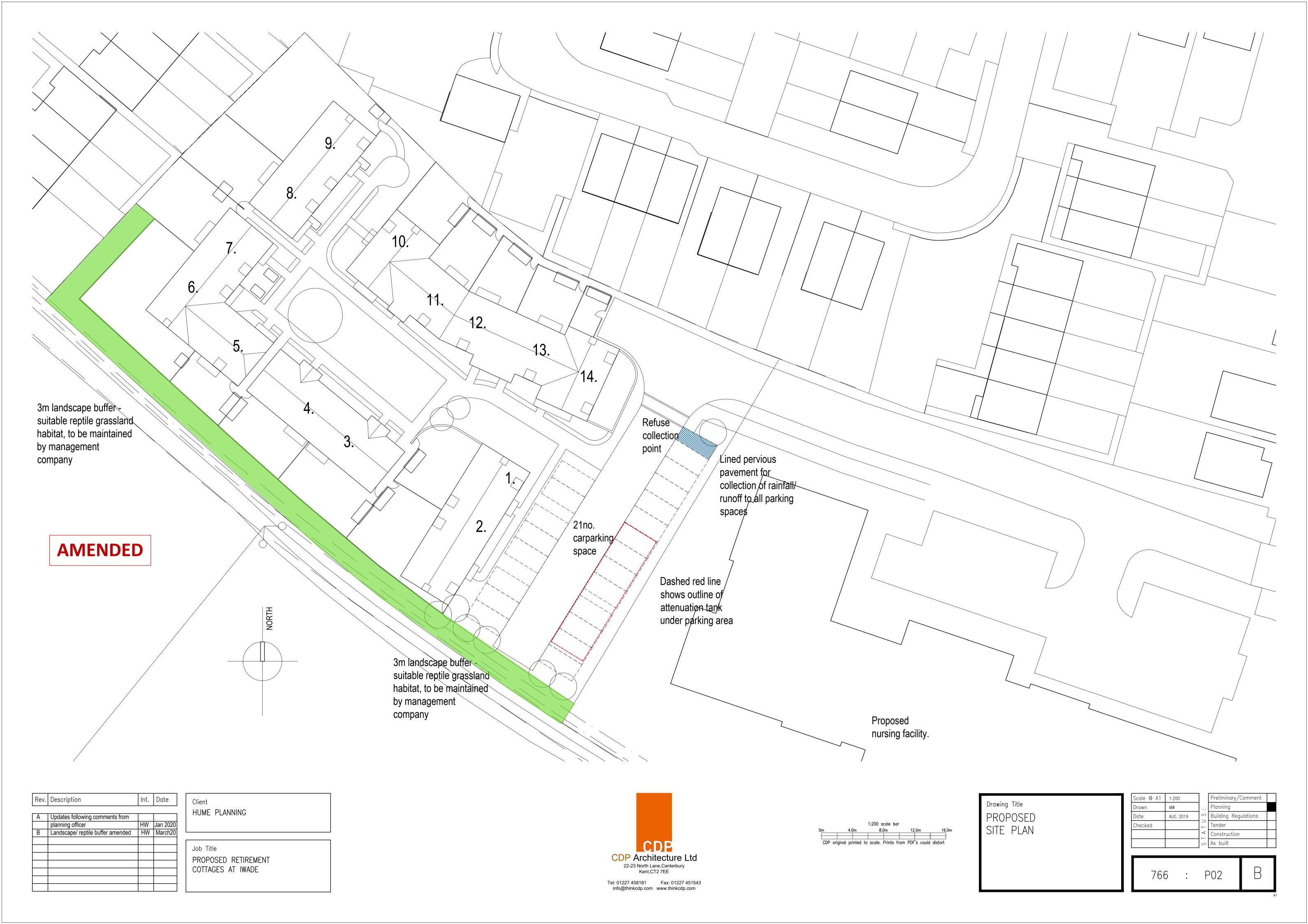

Environmental


- The site is located above Unproductive Strata in both the London Clay Formation and overlying superficial Head Deposit. The site is not located within an Environment Agency defined groundwater Source Protection Zone.
- Concentrations of toxic and phytotoxic metals were low and below their respective guidelines in all of the soil samples analysed on site and therefore are not considered to pose a significant risk to human health.
- Concentrations of PAH and TPH were all below the relevant SGVs and therefore are not considered likely to pose a significant risk to human health.



- Concentrations of Organochlorine Pesticides were low, with concentrations below the limit values for soils as set by the Netherlands, in the absence of any UK limit values.
- The risk to flora on site is considered to be low given the absence of significant phytotoxic contamination and the health and vigour of the plants currently on site.
- Asbestos containing material was not detected within soil samples retrieved from the site and no sources of asbestos have been identified therefore the risks to human health from asbestos are considered to be low. Good working practice should be adhered to, along with appropriate PPE, in line with current legislation when undertaking any works on site.
- The risks posed to workers involved in any future redevelopment of the site are not considered significant providing standard health and hygiene practices are adopted.
- Based on low concentrations of organic contaminants found across the site, it is unlikely that any new services, in particular potable water, will require protection, however it is advisable to seek service provider confirmation of this.
- Based on gas monitoring results, the site has been given a classification of CS2
 which has a low hazard potential and therefore gas protection measures will need
 to be incorporated into any new buildings constructed on the site. Alternatively,
 three further gas monitoring visits could be undertaken to verify the initial findings
 in this report.
- The risks to groundwater in the underlying unproductive clay strata is considered to be low due to the lack of any significant mobile organic contamination.
- The majority of any surplus soil material to be removed off site is likely to be classified as non-hazardous and may be acceptable at a facility licensed to accept inert waste.

Based on the principles and definitions outlined under section 57 of the Environment Act 1995, the site would not be considered to be "Contaminated Land" based on its proposed residential redevelopment with plant uptake end use following implementation of the above recommended remedial measures.



APPENDIX 1 PROPOSED SITE LAYOUT PLAN

APPENDIX 2

WINDOW SAMPLE LOGS AND INSTALLATION DETAILS

12775

Ground and Environmental Services Limited Unit 2 Montpelier Business Park Dencora Way, Ashford Tel: 01233 646237

Window Sampler Log No. WS1

Kent TN23 4FG					Sheet: 1 of 1				
Equipment & Methods.					Project Name: Land off Sheppy Way		Job No:		
Premier Compact 110 _Support Used:None					Project Location: Iwade		1277	75	
_Backfill: 35mm Standpipe					Client: Middlefields Ltd				
Co-ordinates:					Ground Level (m):	Date Started:02/04/2022			
E: N:						Date Completed:02/04/2022			
Samples	and In s	situ Testii	na				Reduced		Depth
Depth (m)	No.	Туре	Result	Field Records	DESCRIPTION		Level (m)	Legend	(Thick) (m)
					MADEGROUND: Dark brown slightly sandy s occasional fragments of asphalt and rare red throughout.	ilty clay with frequent to orick. Fine roots			(0.60)
_ 0.50		TUB							}-
-					MADEGROUND: Light brown slightly sandy s	ilty clay with rare	-0.60		0.60
-					fragments of Asphalt.	inty diay with rais	-0.80	\bowtie	0.20)
-					Dry firm light brown slightly sandy, very silty C	LAY with occasional fine	-0.00	* <u>*</u> ****	(0.20)
0.90- 1.00		D	CN-4	1,1/1,1,1,1	roots.		-1.00	* <u>*</u> ****	1.00
- - -			SN=4		Dry soft to firm light brown slightly sandy, very occasional fine to medium sub rounded chalk	silty CLAY with gravels.		X X X X X X X X X X X X X X X X X X X	
1.50- 1.60		D						X X	}_
-					from 1.50 becoming very silty and firm			* * * * - * -	}
-								******	1
-								X - X - X	{
1.90- 2.00 —		D	ON O	1,1/2,1,1,2				<u> </u>	(2.00)
-			SN=6		from 2.00 to 3.00 Rare chalk gravels			<u> </u>	<u>}</u>
-					IOIII 2.00 to 5.00 Kale chark gravers			^ * * * * * * * * * * * * * * * * * * *	<u>}</u>
-								× × ×	1
-								X X X	\$
		D						×	<u>+</u>
2.50- 2.70									<u>†</u>
-								X X X	1
-									1
_			SN=7	1,1/1,2,2,2	Dur Sirver lively a reason we wish lively areas are sattlinent at	the OLAY with accessoral	-3.00	× × × × ×	3.00
-					Dry firm light orange with light grey mottling si coarse sub angular flints.	ity CLAY with occasional		<u> </u>	
-								X X X	}
-								× × ×	†
- _								× -× -	(1.00)
-								××_	T `
3.60- 3.80		D							1
-								<u> </u>	}
-				2 10/11 7 4 4			4.00	<u>~~</u> ~~	4.00
_			SN=26	3,10/11,7,4,4			-4.00	_^_^_	
							(Thick	of W/S 4. ness of bas	sal layer
								not proven)
Remarks:				1	1		Logged	I Bv: Che	ecked By:
. winding.							JM	-	CSS
							Scale:		roved By:
							1:25		-,-
							FIG No		
Notes: For explan	ation of s	symbols a	and abbreviat	ions, see Key Sheet.					

315	Unit 2 Montpelier B Dencora Way, Ash Kent TN23 4FG		nental Services Limited T: 01233 646237	Hole ID. Installation Sheet: 1 of 1	ID. WS1 ation Details & Readings of 1			
Equipment & Method: Premier Compact 110 Support Used:None Backfill: 35mm Stan	Methods. Project Name: Land off Sheppy Way pact 110 pd:None Project Location: Iwade			Job No: 12775				
Co-ordinates: E: N:			Ground Level (m):	Date Started:4/2/2 Date Completed:4				
nstallation Date :	4/2/2022	Depth to TOP Re	esponse Zone : 1 (m)			Denth	Related	
nstallation Type :			Response Zone : 4 (m)		Installation Diagram	Rei	marks vation)	
						1 (-1	.00)	
						-	dole 4.00	
						(-4	.00)	
					C	-	Checke	
						(-4	.00) Checke	

Ground and Environmental Services Limited Unit 2 Montpelier Business Park Tel: 01233 646237

Window Sampler Log No. WS2

35	De Ke	ncora W nt TN23	ay, Ashford 4FG			Sheet: 1 of 1			
Equipment & Meth					Project Name: Land off Sheppy Way		Job No	:	
Premier Compact 110 _Support Used:None _Backfill: 35mm Standpipe					Project Location: Iwade		12775		
_backiiii: 35mm S	tanupipe	e			Client: Middlefields Ltd				
Co-ordinates:					Ground Level (m):	Date Started:02/04/2022			
E: N:						Date Completed:02/04/2022			
Samples	and In	situ Testi	ng		DESCRIPTION		Reduced Level (m)	Legend	Depth (Thick)
Depth (m)	No.	Туре	Result	Field Records	BESCHI TION		(m)	Legend	(m)
(III) - - -					MADEGROUND: Dark brown slightly sandy si occasional fragments of asphalt and rare red I throughout.	ilty clay with frequent to brick. Fine roots			(0.55)
_ 0.50		TUB			Druftime light brown elightly condy your eity.	N AV with accessional fine	-0.55		0.55
- - -					Dry firm light brown slightly sandy, very silty C roots.	LAY With occasional line			(0.45)
0.90- 1.00		D	SN=7	1,1/2,1,2,2	Dur. firms light harrows your siles Ol AV with a sec	-i	-1.00	* * * * * * * * * * * * * * * * * * *	- 1.00
- - - - 1.50- 1.60		D	314-7		Dry firm light brown very silty CLAY with occa rounded chalk gravels.	sional fine to medium sub			
- 1.90- 2.00		D						* * * * * * * * * * * * * * * * * * *	
- - - -			SN=7	1,1/1,2,2,2				X X X X X X X X X X X X X X X X X X X	(2.00)
_ 2.50- 2.70 - - -		D	SN=12	1,2/2,2,2,6	Wet to moist firm light tan, silty CLAY with occ	ancional to fraguent	-3.00	* - X - X - X - X - X - X - X - X - X -	3.00
- - - -					coarse up to cobble sized angular to sub angu	lar flints.		X X X X X X X X X X X X X X X X X X X	- - _ (0.60)
3.60- 3.80		D			Wet medium dense light tan silty clayey GRAN sized angular flint.	/EL. Coarse up to cobble	-3.60		3.60
- -			CN=15	3,2/3,4,4,4			-4.00		4.00
			GN-10				(Thick	of W/S 4.1	al layer
Remarks:							Logged	-	cked By:
							Scale: 1:25		CSS roved By:
Notos: For ovalon	ation of	evmbole	and abbreviati	ions see Key Sheet			FIG No		

75 De Ke	Fround an nit 2 Montpelier Busi encora Way, Ashford ent TN23 4FG		ntal Services Limited T: 01233 646237	Hole ID Installation Sheet: 1 of 1	n Details & F	Reading	s
Equipment & Methods. Premier Compact 110			Project Name: Land off Sheppy Way Project Location: Iwade			b No:	
Support Used:None Backfill: 35mm Standpi	ipe		Client: Middlefields Ltd				
Co-ordinates: E: V:			Ground Level (m):	Date Started:4/2			
nstallation Date : 4/	/2/2022	Depth to TOP Respo	onse Zone : 1 (m)			Depth	Related
nstallation Type : Sl	Р	Depth to BASE Resp	ponse Zone : 4 (m)		Installation Diagram		narks ration)
						_1 (-1. [.]	00)
						End of H	
						. (-4.	00)
					Cor	. (-4.	OO)
						(-4. mpiled By: JM	

Ground and Environmental Services Limited Unit 2 Montpelier Business Park Dencora Way, Ashford Dencora Way, Ashford

	Ke	nt TN23 4	4FG			Sheet: 1 of 1			
Equipment & Meth					Project Name: Land off Sheppy Way		Job No:		
Premier Compact _Support Used:No	one				Project Location: Iwade		1277	5	
_Backfill: 35mm S	tandpipe	Э			Client: Middlefields Ltd				
Co-ordinates:					Ground Level (m):	Date Started:02/04/2022			
E:						Date Completed:02/04/2022			
N: Samples	and In	oitu Tooti	na			·	Reduced		Depth
-				Field Records	DESCRIPTION		Level (m)	Legend	(Thick) (m)
Depth (m)	No.	Туре	Result						()
- - - 0.35		TUB			MADEGROUND: Dark brown slightly sandy s occasional fragments of asphalt and rare red throughout.	ilty clay with frequent to brick. Fine roots			- _ (0.40) -
-					Dry firm light brown very silty CLAY with occa	sional fine roots.	-0.40	× × ×	_ 0.40
- - - - 0.90- 1.00		D			Bry mining it Bown very sitty 62 tr with occur	Sionar illio 1996.		-X -	- _ (0.60) -
— 0.90- 1.00 —			SN=4	1,1/1,1,1,1	Dry a aft to firm light brown your ailty CLAV with	b accesional fine to	-1.00		1.00
- - - - 1.50- 1.60		D	or :		Dry soft to firm light brown very silty CLAY wit medium sub rounded chalk gravels.	h occasional fine to		× × × × × × × × × × × × × × × × × × ×	- - -
- - - 1.90- 2.00		D		1,1/1,1,2,2				× × × × × × × × × × × × × × × × × × ×	- - - - (2.00)
- - - - - 2.50- 2.70		D	SN=6	1, 1/1, 1,2,2				- X - X - X - X - X - X - X - X - X - X	- (2.00)
- - - - -			CN=17	1,2/2,5,5,5	Wet to moist loose light tan silty CLAY with occoarse up to cobble sized angular to sub angu	ccasional to frequent lar flints.	-3.00	× × × × × × × × × × × × × × × × × × ×	- _ 3.00 - - - - - (1.00)
- 3.60- 3.80		D	CN=7	3,4/2,2,1,2			4.00		- - - - 4.00
							(Thickn	of W/S 4.0 less of bas not proven)	al layer
Remarks:							Logged	By: Chec	cked By:
							JM	(CSS
							Scale: 1:25	Appr	oved By:
Notes: For explana	ation of	symbols	and abbreviat	ions, see Kev Sheet.			FIG No.		

	Project Name: Land off Sheppy Way Project Location: Iwade Client: Middlefields Ltd Ground Level (m):	Data Standard (10	Jo	b No: 12775	
	Ground Level (m):	Data Startadi 4/0	1		
		Date Started:4/2 Date Completed			
, 	esponse Zone : 1 (m) Response Zone : 4 (m)		Installation Diagram	Rei	Related marks vation)
				. 1 (-1	.00)
			Cor		Checked CSS
			So		Approved
	bols and abbreviations, see Ke	bols and abbreviations, see Key Sheet.	bols and abbrevisitions, see Key Sheet.	Con Sc	Complied By: JM Scale: FIG No.

Ground and Environmental Services Limited Unit 2 Montpelier Business Park Tel: 01233 646237

75	De Ke	ncora W nt TN23	ay, Ashford 4FG			Sheet: 1 of 1			
Equipment & Meth					Project Name: Land off Sheppy Way		Job No:		
Premier Compact _Support Used:No	one				Project Location: Iwade		1277	5	
_Backfill: Arisings					Client: Middlefields Ltd				
Co-ordinates:					Ground Level (m):	Date Started:02/04/2022			
E: N:						Date Completed:02/04/2022			
Samples	and In	situ Testi	ng		DECORPORA		Reduced Level (m)	Lamand	Depth (Thick)
Depth	No.	Туре	Result	Field Records	DESCRIPTION		(m)	Legend	` (m) [′]
(m)					MADEGROUND: Dark brown slightly sandy s	ilty clay with frequent to		XXXX	1
-					MADEGROUND: Dark brown slightly sandy s occasional fragments of asphalt and rare red throughout.	orick. Fine roots		XXXX	(0.45)
_ 0.30		TUB			throughout.				(0.43)
-							-0.45		0.45
- -					Dry firm light brown silty CLAY with occasiona	al fine roots.		· × × × × × × × × × × × × × × × × × × ×	
-								<u> </u>	(0.55)
-								× × × × × × × × × × × × × × × × × × ×	
0.90- 1.00		D	SN=4	1,1/1,1,1,1			-1.00	* ****	1.00
-			OIV I		Dry soft to firm light brown very silty CLAY wit medium sub rounded chalk gravels.	h occasional fine to		× × ×	}
-								<u> </u>	
-								<u> </u>	1
1.50- 1.60		D						× × ×	-
-								<u> </u>	1
-								<u> </u>	1
1.90- 2.00		D		1,1/1,1,1,2				- * - * * <u>* * *</u>	(2.00)
- -			SN=5	.,,.,=				<u>× × × × </u>	[
-									1
-								<u>x </u>	1
_								<u>x </u>	_
_ 2.50- 2.70		D						×° × ×	1
-								<u> </u>	
=								<u> </u>	1
_			SN=9	1,2/2,2,2,3			-3.00 [<u> </u>	3.00
							End (Thickn	of W/S 3. ess of bas	00 m sal layer
							` '	not proven)
Remarks:							Logged	·	cked By:
							JM Scale:		CSS roved By:
							1:25	1	. этой Бу.
							FIG No.		
Notes: For evolun	ation of	symbole	and abbreviati	ions see Key Sheet					

Ground and Environmental Services Limited

-1-	De Ke	ncora W nt TN23	peller Busines ay, Ashford 4FG	ss Park Tel:	U1233 64623 <i>7</i>	Sampler Log No. Sheet: 1 of 1	WS5		
Equipment & Met					Project Name: Land off Sheppy Way	Sheet. 1 of 1	Job No:		
Premier Compact _Support Used:N	:110 one				Project Location: Iwade		1277	5	
_Backfill: Arisings					Client: Middlefields Ltd				
Co-ordinates:					Ground Level (m):	Date Started:02/04/2022			
E: N:					G. Sainte 2575 (1.17).	Date Completed:02/04/2022			
Samples	and In:	situ Testi	ng				Reduced		Depth
Depth	No.	Туре	Result	Field Records	DESCRIPTION		Level (m)	Legend	(Thick) (m)
(m)		.,,,,							
-					MADEGROUND: Dark brown slightly sandy s occasional fragments of asphalt and rare red	ilty clay with frequent to brick. Fine roots			<u>.</u>
- _ 0.30		TUB			throughout.			>>>>	(0.40)
-							-0.40		0.40
_					Dry firm light brown slightly sandy silty CLAY	with occasional fine roots.		<u> </u>	-
-									(0.60)
-									
0.90- 1.00		D		1,1/1,1,1,1			-1.00	× × ×	1.00
- -			SN=4	1,1,1,1,1,1	Dry soft to firm light brown very silty CLAY wit medium sub rounded chalk gravels.	th occasional fine to	1.00	× × ×	1
-					medium sub rounded chair gravers.			X X X	1
-								× × ×	<u> </u>
1.50- 1.60		D						<u>* </u>	_
-								_ _	}
-								×°	1
1.90- 2.00		D						*	<u></u>
_			SN=6	1,1/1,1,2,2				<u> </u>	(2.00)
-								× -×-	
-								<u> </u>	1
- -								× × ×	_
2.50- 2.70		D						<u>× </u>) -
-								<u> </u>	_
-								<u></u>	<u> </u>
_			SN=13	1,1/2,2,4,5			-3.00		1 _ 3.00
							End	of W/S 3.0 ness of bas	00 m
							(THICKI	not proven))
Remarks:	ı	1	I	1	1		Logged	By: Che	cked By:
							JM		CSS
							Scale: 1:25	Аррі	roved By:
							FIG No.		
	-# · *						. 10 140.		

Ground and Environmental Services Limited

	De Ke	ncora Want nt TN23 4	peller Busines ay, Ashford 4FG	s Park Tel:	01233 646237	Sampler Log No. Sheet: 1 of 1	W56		
Equipment & Met					Project Name: Land off Sheppy Way	Sheet. 1 of 1	Job No:		
Premier Compact _Support Used:No					Project Location: Iwade		1277		
_Backfill: Arisings	5				Client: Middlefields Ltd				
Co-ordinates:					Ground Level (m):	Date Started:02/04/2022			
E: N:					Ground Edver (III).	Date Completed:02/04/2022			
Samples	s and In s	situ Testi	ng				Reduced		Depth
Depth	No.	Туре	Result	Field Records	DESCRIPTION		Level (m)	Legend	(Thick) (m)
(m)					MADECDOLIND, Dayle brown alightly county o	ilty alay with fraguent to		XXXXX	1
					MADEGROUND: Dark brown slightly sandy s occasional fragments of asphalt and rare red	brick. Fine roots			}
0.30		TUB			throughout.			XXX	(0.50)
							-0.50		
-					Dry firm light brown very silty CLAY with occa	sional fine roots.	-0.50	× × ×	0.50
								*XXX	(0.50)
								- * 	<u></u>
0.90- 1.00		D	SN=4	1,1/1,1,1,1			-1.00	× —× — × —× =	1.00
			011-4		Dry soft to firm light brown silty CLAY with ocupus rounded chalk gravels.	casional fine to medium		× × ×	1
								<u>x_^_</u> x	1
								<u> </u>	1
1.50- 1.60		D						× × ×	(1.00)
								*- * *- *	1
								<u> </u>	1
1.90- 2.00		D	ON 0	1,1/1,2,3,2			-2.00	×	2.00
			SN=8		Dry firm light orange with light grey mottling si coarse sub angular flints.	ilty CLAY with occasional		<u>* </u>	1
								<u> </u>	1
									1
-								<u> </u>	(1.00)
2.50- 2.70		D						- X	1
								** <u>*</u> * <u>*</u> *	}
				1,1/2,2,2,2			-3.00	- × × × <u>×</u> × <u> </u>	3.00
=			SN=8	1,1/2,2,2,2				of W/S 3.	
							(Thickr	ness of bas	sal layer
								not proven	1)
Remarks:			<u> </u>				Logged	By: Che	ecked By:
							JM	-	CSS
							Scale: 1:25	Арр	roved By:
							FIG No.		
N	-# · ·			K O'			i io ivo.		

Ground and Environmental Services Limited Unit 2 Montpelier Business Park Tel: 01233 646237

	Den	icora Wa it TN23 4	ay, Ashford 1FG	S Fair Tel.	01233 040237	Sampler Log No.	VV31		
Equipment & Metho					Project Name: Land off Sheppy Way	Sheet: 1 of 1	Job No:		
Premier Compact 1	10				Project Location: Iwade		1277		
_Support Used:Non _Backfill: 35mm Sta	ne andpipe				Client: Middlefields Ltd		12//	3	
Co-ordinates: E:					Ground Level (m):	Date Started:02/04/2022			
N:						Date Completed:02/04/2022	Reduced		Donath
Samples a				Field Records	DESCRIPTION		Level (m)	Legend	Depth (Thick) (m)
Depth (m)	No.	Туре	Result						
		TI ID			MADEGROUND: Dark brown slightly sandy s occasional fragments of asphalt and rare red l throughout.	ilty clay with frequent to brick. Fine roots	0.00		(0.30)
0.30		TUB			Dry firm light brown slightly sandy, very silty C roots.	LAY with occasional fine	-0.30		0.30
									(0.70)
0.90- 1.00		D	SN=4	1,0/1,1,1,1	Dry firm light orange with light grey mottling, voccasional coarse sub angular flints.	ery silty CLAY with	-1.00	× × z	1.00
					occasional coarse sub angular flints.			* -× - -× -× -× -×	\{ -\ -\ -\ -\ -\
1.50- 1.60		D						~ ~ ~ × · × · × · × · × · × · × · × · ×	
1.90- 2.00		D	SN=6	1,1/1,1,2,2					(2.00)
- 2.50- 2.70		D						x x x x x x x x x x x x x x x x x x x	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
. 2.00 2.70		5			from 2.00 Oceanieral Convey sub-survitor fi			× × × × × × × × × × × × × × × × × × ×	7
<u>-</u>			CN=4	1,1/1,1,1,1	from 2.80 Occasional Coarse sub angular fl Dry soft to firm light brown very silty CLAY wit medium sub rounded chalk gravels.		3.00	* - x - x - x - x - x - x - x - x - x -	3.00
3.60- 3.80		D						* * * * * * * * * * * * * * * * * * *	(1.00)
-			CN=19	3,4/6,6,4,3			-4.00	×	4.00
							(Thickr	of W/S 4. ness of ban not prover	sal layer
Remarks:			<u> </u>	1	1		Logged	By: Che	ecked By:
							JM		CSS
							Scale: 1:25	Арр	proved By:
Notes: For explanat	ion of s	ymbols a	and abbreviat	ions, see Key Sheet.			FIG No.		

715	Unit 2 Montpelier I Dencora Way, Asl Kent TN23 4FG		mental Services Limited T: 01233 646237	Hole ID. Installation Sheet: 1 of 1	WS7 Details 8	& Readinç	gs
Equipment & Method Premier Compact 11 _Support Used:None _Backfill: 35mm Star	10 e		Project Name: Land off Sheppy Way Project Location: Iwade Client: Middlefields Ltd			Job No: 12775	
Co-ordinates: E: N:			Ground Level (m):	Date Started:4/2/2			
Installation Date :	: 4/2/2022	Depth to TOP F	Response Zone : 1 (m)			Denth	Related
Installation Type	: SP		Response Zone : 4 (m)		Installation Diagram	Ře	marks vation)
							.00)
					<u>: : : </u>	(-4	.00)
				<u>.</u>	C	Compiled By:	Check
							Check

Ground and Environmental Services Limited

	De Ke	encora W ent TN23	peller Busines ay, Ashford 4FG	ss Park Tei:	01233 646237	Sampler Log No. Sheet: 1 of 1	WS8		
Equipment & Met					Project Name: Land off Sheppy Way	Sheet. 1 of 1	Job No:		
Premier Compact _Support Used:N	110				Project Location: Iwade		1277		
_Backfill: Arisings	JI IC				Client: Middlefields Ltd				
0						Data Otasta (100/04/0000			
Co-ordinates: E:					Ground Level (m):	Date Started:02/04/2022 Date Completed:02/04/2022			
N: Samples	and In	oitu Tooti	ing				Reduced		Depth
				Field Records	DESCRIPTION		Level (m)	Legend	(Thick) (m)
Depth (m)	No.	Туре	Result						(***)
_					MADEGROUND: Dark brown slightly sandy s occasional fragments of asphalt and rare red	ilty clay with frequent to			
-					throughout.	Drick. Fine roots		XXXX	(0.35)
-							-0.35		0.35
- _ 0.50		TUB			Dry firm light brown very silty CLAY with occa	sional fine roots.		<u> </u>	Ĺ
-								<u> </u>	- (0.05)
-								<u> </u>	(0.65)
-								<u> </u>	t
0.90- 1.00		D	SN=4	1,1/1,1,1,1			-1.00	- * 	_ 1.00
-					Dry soft to firm light brown very silty CLAY wi medium sub rounded chalk gravels.	th occasional fine to		× -× -:	-
-								X X X	ŀ
-								<u> </u>	-
1.50- 1.60		D						x x	F
-								- × - ×	-
-								<u> </u>	
1.90- 2.00		D						~_ <u>~</u> ~ ;	-
_			SN=6	1,1/1,1,2,2				* * * * * * * * * * * * * * * * * * *	_(2.00)
-								× × ×	
-								<u> </u>	-
-								<u>x_x_x</u>	-
		D						× × ×	[
-								×°—×—°	-
-									}
- _				1,2/1,2,3,3			-3.00	×	- _ 3.00
			SN=3					of W/S 3.0	10 m
							(Thickr	ess of bas	al layer
							!	not proven)
Remarks:	<u> </u>	1	<u>I</u>		I		Logged	By: Che	cked By:
							JM		CSS
							Scale: 1:25	Appr	oved By:
N	_#. ·						FIG No.		

APPENDIX 3

DYNAMIC CONE PENETROMETER TEST RESULTS

		DY	NAMIC	CONE PE	NETROME	TER TEST R	ESULTS		Test	No ite:	DCP1
Droine	t Name		l and o	off Sheppey	May Iwado				Project		11-Feb
	Name:			fields Ltd	vvay, iwaue				Zero Read	_	12775 40
				<u> </u>							
No. of	Depth	Penetration	Est CBR				Estimated CI				
Blows 0	(mm) 0	mm/blow	(%)	0 -)	5 1	0 1	5 20	25		30
1	70	70	3								
2	141	71	3	F0							
3	203	62	4	50 -	φ						
4	262	59	4								
5	301	39	6	100 -							
6	328	27	9								
7	371	43	6	150 -	— 9						
8 9	393 428	22 35	12 7								
10	458	30	8	200 -	b						
11	490	32	8								
12	518	28	9	250 -							
13	539	21	12	250 -	م						
14	572	33	7		`						
15	596	24	10	300 -		8					
16	624	28	9								
17	641	17	15	350 -							
18	668	27	9			œ					
19	692	24	10	400 -			>				
20	721	29	9	100							
21	736	15	17	450		(
22 23	764 800	28 36	9	450 -		þ					
25	842	21	12	E E							
28	901	20	13	<u> </u>							
31	933	11	25	Depth (mm)		~					
				– 550 -			<u>></u>				
						Q					
				600 -			9				
				000 -		4					
						ا هـ					
				650 -							
						9					
				700 -) 0				
						<u>«</u>					
				750 -				≫			
				800 -							
				000 -							\neg
				850 -			1				
				900 -			<u> </u>				
				950 -					9		
				1000 -							
				1000 -							

Tested By: CSS Checked By: PAD

		DY	NAMIC	CONF	F PFNF	TROM	FTFR	TEST RE	- 1112=	TS				Te	st No	DCF
			IVAIIIO	00111		-11101111			-002					I	Date:	11-F
Projec	t Name	ə :	Land o	ff Shep	pey Wa	ay, Iwad	е						F	Projec	ct No:	127
Client	Name:		Middle	fields L	_td								Zei	ro Re	ading	
No. of	Depth	Penetration	Est CBR						Estima	ted CBF	R Value	(%)				
Blows	(mm)	mm/blow	(%)		0	2	4	6	8	10	12	2 1	4	16	18	20
0	0				0 —											
1	104	104	2													
2	163	59	4		50 —				-					+		
3	236	73	3													
4	257	21	12		100											
5	298	41	6		100	(
6	342	44	6													
7	383	41	6		150 —		\rightarrow							-		
8	425	42	6				ያ									
9	460	35	7		200											
10	502	42	6		200		- / I									
11	533	31	8				6									
12	560	27	9		250				\rightarrow	_	->	-				-
13	594	34	7													
14	626	32	8		300											
15	648	22	12					/								
16	664	16	16					4								
17	687	23	11		350			-4						+		
18	712	25	10					λ								
19	734	22	12		400											
20	752	18	14					J								
23	793	14	19					4								
25	831	19	13	_	450				D					+		
27	865	17	15	<u>E</u>												
29	906	21	12	5	500			_{	-					+		
30	943	37	7	Depth (mm)												
	1	I	1		EEO				1	. 1				1	1	- 1

Tested By: JF Checked By:

Q(

	DYNAMIC CONE PENETROMETER TEST RESULTS	Test No	DCP3
	DINAMIC CONE PENETROMETER TEST RESULTS	Date:	11-Feb
Project Name:	Land off Sheppey Way, Iwade	Project No:	12775
Client Name:	Middlefields Ltd	Zero Reading	27

No. of Passentiation Pas	Olicili	itailio.		wiidaic	iicius Ltu							2610	ixeauiiig	2
Blook (min) membles (%) (%) 0 2 4 6 8 10 12 14 16 18 20 0 1 6 6 6 6 6 6 700 1 750 1														
0 1 61 61 4 4 2 114 53 5 5 50 6 4 4 133 6 6 4 125 200 1 1 6 100 6 6 6 1 12 5 5 5 6 6 100 6 6 6 1 12 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1				Est CBR				Esti	mated C	BR Value				
1 61 61 4 53 5 50 50 50 50 50 600 650 700 7550 850 9950			mm/blow	(%)	, ,) 2	4	6	8 1	10 1	2 1	4 16	18	20
141			61	A	 									
3 152 33 6 1 100 100 100 100 100 100 100 100 100														
4 193 41 6 100 1 1					50 -		0	1						
5 238 43 6 6 100 17 17 15 15 150 150 150 150 17 17 15 15 150 150 17 17 15 15 150 150 17 17 15 15 150 17 17 15 15 150 17 17 15 15 150 17 17 15 15 150 17 17 17 15 15 150 17 17 17 17 17 17 17 17 17 17 17 17 17							7							
6 250					100									
7 287 17 15 15 15 15 15 15 1							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
8 283 226 10 9 334 41 6 200 111 413 38 6 12 414 28 9 13 478 37 7 15 538 29 9 300 250 18 664 12.5 21 21 721 28.5 9 22 784 31.5 8 25 843 30 8 27 914 36 7 28 948 32 8					450			\downarrow						
9 334 41 6 200 375 41 66 200 375 41 66 200 375 41 28 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					150			7						
10								/						
11					200 -			9						
12								/						
13					250		0							,
15 536 29 9 300 300 300 350					250 -									, _]
17 639 52 5 19 664 12.5 21 21 72.1 28.5 9 23 784 31.5 8 25 843 30 8 7 7 28 946 32 8 8 450 600 650 700 750 800 950 950									_					
19					300 -			1						—
21 721 28.5 9 350 784 31.5 8 8 400 850 860 850 900 950]					
23					350 -			Ψ						
25 843 30 8 7 914 38 7 946 32 8 400 450 600 650 700 750 800 850 990 990 990 990								1						
27 914 36 32 8 450								Υ						
28 946 32 8 450 600 650 700 750 800 850 950 950					400			1						
(a) (b) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	28	946		8				~_	L					
550 600 650 700 750 800 850 900					450 -				>9					
550 600 650 700 750 800 850 900					Ê]					
550 600 650 700 750 800 850 900					E			"						
550 600 650 700 750 800 850 900					a 500 [
600 650 700 750 800 850 900									Do					
650 700 750 800 850 900 950					550 -			 	/					
650 700 750 800 850 900 950														
650 700 750 800 850 900 950					600									
700 750 800 850 900								1						
700 750 800 850 900 950							<u>«</u>							
750 800 850 900 950					650									
750 800 850 900 950														
750 800 850 900 950					700 -			1	-					
850 900 950									9					
850 900 950					750 -				/					
800 850 900 950					7.50				/					
950								0	{					
950					800 -			1	\					
950									\					
950					850 -				Þ					
950								/	Y					
950					000			/						
950					900 -			7						
								/						
1000					950 -			+						
1000														
					1000									

	DYNAMIC CONE PENETROMETER TEST RESULTS	Test No	DCP4
	DINAMIC CONE PENETROMETER 1231 RESULTS	Date:	11-Feb
Project Name:	Land off Sheppey Way, Iwade	Project No:	12775
Client Name:	Middlefields Ltd	Zero Reading	48

Cilent	name:		wiidule	fields Lta								Zero R	eading	48
No. of	Depth	Penetration	Est CBR					Esti	mated C	BR Valu	e (%)			
Blows	(mm)	mm/blow	(%)		0 2	2 4	4 6				12 14	4 16	18	20
0	0			0										\neg
1	70	70	3											
2	109	39	6	50	+	-	-							
3	132	23	11			ا هر	\downarrow							
4	175 201	43 26	6 10	100										
5 6	238	37	7				`	<u> </u>						
7	285	47	5	450						$>\!\!\!>$				
8	333	48	5	150										
9	374	41	6				G≤							
10	412	38	6	200	+				\triangleright					_
11	463	51	5											
12	496	33	7	250				ø						
14	570	37	7				/							
16	644	37	7	300			q							
18	729	43	6	300										
20	799	35	7				d							
22 24	863 910	32 23.5	8	350										
24	910	23.5	11				8	8						
				400	-									
							,	Þ						
				450										
							< _							
				正 よ 500										
				Depth (mm)				T						
								/						
				550	+									
								φ						
				600	-									
				650				ф						
								/						
				700				/						
				700										
				750	+			\setminus						- $ $ $ $
				800	-	-		- <i>b</i> -						
								\						
1				850				$oxedsymbol{oxed}$						
								β	\downarrow					
				222										
				900	1					Ø				
1														
				950	+		-							
				l										
1				1000										

	DYNAMIC CONE PENETROMETER TEST RESULTS	Test No	DCP5
	DINAMIC CONE PENETROMETER 1231 RESULTS	Date:	11-Feb
Project Name:	Land off Sheppey Way, Iwade	Project No:	12775
Client Name:	Middlefields Ltd	Zero Reading	18

No. of Depth Promission Er Case Ca	Cilent	name:		wiidale	neias Lta						Zero Re	ading	1
Billows Chip Translation Chip Chip						•	•						
0 0 50 50 50 50 50 5 50 50 50 50 50 50 5	No. of	Depth	Penetration	Est CBR									
1			mm/blow	(%)) 2	4	6 8	10	12 1	4 16	18	20
2 110 80 4 5 83 3 3 4 8 5 6 7 447 41 6 8 433 30 6 7 447 41 5 5 10 5 10 5 10 5 10 5 10 5 10 600 650 650 600 650 650 600 650 650 600 650 65			50	5	ľ								
1 193													
4 275 82 3 3 100 6 300 43 6 7 407 41 8 8 434 30 7 9 485 52 5 5 12 641 51 5 6 13 86 44 6 6 16 800 38 7 7 17 841 41 0 6 16 800 38 45 5 19 938 45 5 5					50 -		7						\neg
\$ 323 48 5 6 100							/						
7 407 41 6 6 8 443 36 5 7 9 200 9 50 5 12 641 51 5 5 250 9 1 1 1 500 9 50 5 12 641 51 5 6 800 36 77 841 41 6 801 18 881 50 5 19 938 45 5 19 938 45 5 19 938 45 5 19 938 1 19 19 19 19 19 19 19 19 19 19 19 19 1	5				100 -								_
8 443 36 7 7 495 52 5 5 200 495 52 5 5 250 495 495 495 495 495 495 495 495 495 495	6	366	43	6			1						
8 443 38 75 9 495 52 10 540 45 5 11 590 50 5 13 685 44 6 14 7724 39 6 16 800 38 7 17 841 41 6 18 891 50 5 19 938 45 5	7	407	41	6	150 -								
10	8			7			/						
11	9				200	6	(
12					200								
13													
14					250								
15						@	<u> </u>						
16 800 36 7 17 841 41 6 18 810 50 5 5 19 400 450 450 55 19 400 650 700 750 800 850 990 950					300 -		$\overline{}$						_
17 841 41 6 5 5 400 450 450 5 5 600 600 650 700 750 800 850 900 950							B						
18 891 50 5 5 400 45 5 6 600 650 700 750 800 850 900 950					350 -		\perp						
450 450 450 550 600 650 700 750 800 850 900 950	18	891		5			p						
450 1 450 550 600 650 700 750 800 850 900 950	19	936	45	5	400								
550 600 650 700 750 800 850 900					400			X					
550 600 650 700 750 800 850 900													
550 600 650 700 750 800 850 900													
550 600 650 700 750 800 850 900					E E								
550 600 650 700 750 800 850 900					500 £		9						
550 600 650 700 750 800 850 900)ept								
600 650 700 750 800 850 900 950)						
650 700 750 800 850 900 950													
650 700 750 800 850 900 950					600 .		φ						
700 750 800 850 900 950					000								
700 750 800 850 900 950													
700 750 800 850 900 950					650		+						
750 800 850 900 950							8						
750 800 850 900 950					700 -								
800 850 900 950								>					
800 850 900 950					750 -								_
900								۱ ۹					
900					800 -								
900 950													
950					050		9	8					
950					850								
950							6						
950					900 -		1						\neg
950							%						
1000					950								-
1000													
					1000 -								

	DYNAMIC CONE PENETROMETER TEST RESULTS	Test No	DCP6
	DINAMIC CONE PENETROMETER 1231 RESULTS	Date:	11-Feb
Project Name:	Land off Sheppey Way, Iwade	Project No:	12775
Client Name:	Middlefields Ltd	Zero Reading	18

No. of Depth Personal Color Color Color	Client	Name:		Middle	fields Ltd										Zero Re	ading	1
Blows (min) memblow (%) (%) 50 50 50 50 50 50 50 50 50 50 50 50 50						_								-			
Blows (mm) memblow (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	No. of	Depth	Penetration	Est CBR						E							
1	Blows	(mm)	mm/blow	(%)	•		:	2	4	6	8	10	12	14	16	18	20
2 114 8 84 4 3 3 191 77 3 3 4 4 5 5 6 100 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				_	0	T											
3																	
4 275 848 5 6 800 85 8 43 37 7 7 7 7 406 86 46 5 8 43 37 7 7 9 495 952 5 5 150 950 950 950 950 950 950 950 950					50	+			+ $p-$	+							-
5 323 48 5 7 7 7 406 48 5 7 7 7 406 48 5 7 150 7 9 9 495 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5									//								
6 360 37 7 5 8 44 43 37 7 7 9 9 495 55 9 4 150 9 9 37 48 5 9 9 9 0 9 9 5 0 9 9 5 0 9 9 5 0 9 9 9 9					100	+			/								
8	6	360	37	7				9	9								
8 443 37 75 9 495 52 10 540 45 5 11 995 95 4 12 639 444 6 13 683 44 6 13 683 44 6 16 802 40 6 17 843 41 6 18 889 46 5 19 937 48 5	7	406	46	5	150	\perp		$\perp \perp \perp$									
10								/									
11					200	\perp		φ									
12					200												
13					050												
14					250												
16 802 40 6 17 843 41 6 889 46 5 19 937 48 5 5 600 600 650 700 750 800 850 990 950								Q									
17 843 41 6 5 400 450 460 5 500 600 650 700 750 800 850 900 950	15	762	38	6	300	+		<u> </u>		+							
18 889 46 5 5 400 450 450 600 650 700 750 800 850 900 950	16	802	40	6					\ \&								
18 889 48 5 1 400 450 450 600 650 700 750 800 850 900 950					350	+				8							_
450 450 550 600 650 700 750 800 850 900 950																	
450 (Em) 450 550 600 650 700 750 800 850 900 950	19	937	48	5	400	+			\ d	_	_						
(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c										\downarrow							
550 600 650 700 750 800 850 900					450	\perp											
550 600 650 700 750 800 850 900									/	1							
550 600 650 700 750 800 850 900					E 500	\perp			4								
550 600 650 700 750 800 850 900					eptt				\								
600 650 700 750 800 850 900									>								
650 700 750 800 850 900 950					330				/								
650 700 750 800 850 900 950									6								
700 750 800 850 900 950					600												
700 750 800 850 900 950									/ /								
750 800 850 900 950					650				1 1	+							
750 800 850 900 950									4								
750 800 850 900 950					700	+			+	+							_
800 850 900 950										ø							
800 850 900 950					750	+				\perp							_
900										۱۳							
900					800	\perp				4							
950										I							
950					850	\perp				þ							
950									/	'							
950					900	\perp			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
950					300												
					050				9								
1000					950												
1000																	
					1000												

D	NAMIC CONE PENETROMETER TEST RESULTS	Test No	DCP7
	MAMIC CONE PENETROMETER 1231 RESULTS	Date:	11-Feb
Project Name:	Land off Sheppey Way, Iwade	Project No:	12775
Client Name:	Middlefields Ltd	Zero Reading	24

Olicit	itailie.		wiidaic	illelas Eta								201	o ixeaui	···9	24
No. of	Depth	Penetration	Est CBR						imated C						
Blows 0	(mm) 0	mm/blow	(%)	0	0 :	2	4 (6	8 1	0	12 1	4 1	16 1	18	20
1	14	14	19											Ð	
2	37	23	11	50						<u> </u>					
3	69	32	8	50				G							
4	92	23	11												
5	119	27	9	100						>				+	-
6	136	17	15						g<						
7	166	30	8	150								\triangleright		<u> </u>	_
8	200	34	7						p						
9	223	23	11	000				/	1						
10	277	54	4	200				<u> </u>							
11	361	84	3							$> \!\!\!>$					
12	398	37	7	250										\vdash	
13	454	56	4				ø								
14	519	65	4	300			/								
15	567	48	5			/	1								
16	604	37	7			/									
17 18	647 688	43 41	6	350		4									
19	724	36	6 7			`									
20	779	55	4	400			 	\triangleright							
21	831	52	5												
22	886	55	4	450											
23	936	50	5				9								
				Depth (mm)			/								
				± 500 €											
				<u>B</u>		Q									
				550			\vdash							_	-
							\ \&								
				600			<u> </u>	<u> </u>							_
								1							
							1	/							
				650			٣								
							(ا	6							
				700			<u> </u>	$\overline{}$						\vdash	-
								\ \doc{1}{2}							
				750										<u> </u>	_
				000			9								
				800											
							φ								
				850			+							_	-
							1								
				900			9								_
							\								
				950			δ								
				950											
				1000			1			<u> </u>					_
						_	_								

		DY	NAMIC	: CON	VE PE	NETE	OME	TER TES	T RES	II TS					Tes	st No	DO	CP8
									, I KLO							ate:	11-	Feb
Project			Land o			Way, I	wade									t No:	12	775
Client	Name:	•	Middle	fields	Ltd									Zero	Rea	ding		23
									Fet	imated C	BR Val	ue (%)						
No. of Blows	Depth (mm)	Penetration mm/blow	Est CBR (%)		C)	2	4			10	12	14	1	6	18	20	
0	0				0]													
1	25	25 31	10 8							/	Þ							
2	56 90	31	7		50 -					8			+				-	
4	127	37	7						/									
5	148	21	12		100 -				 				-					
6	192	44	6						6									
7	249	57	4		150 -							>•—	+				-	
8	312	63	4						l									
9 10	363 409	51 46	5 5		200 -			٦					_					
12	477	34	7															
15	571	31	8		250 -			_										
17	647	38	6		200			I										
19	725	39	6		300 -			1										
21	799	37	7		300 -			þ										
23	878	39.5	6					/										
25	944	33	7		350 -			8										
								\										
					400 -			8									-	
								\	\downarrow									
					450 -				$\overline{}$				+					
				Depth (mm)	·				1									
				=	500 -				+				_					
) Sept					\									
				"	550 -				1 1									
										b								
					600 -													
					000				/									
					050				6									
					650 -				ΤΥ									
					700 -				11				\top					
									φ									
					750 -				+				+				-	
					800 -				├ ∳─				-					
									$\perp I$									
					850 -				$\perp \!\!\! \perp$									
									6									
				l	900 -				\bot									
									\									
					950 -				8									
					000													
				l	1000													
				l	1000													

APPENDIX 4

SOIL GAS AND GROUNDWATER LEVEL MONITORING RESULTS

SOIL GAS SURVEY

Project:	Land	off Sheppey	/ Way	Date: 08/02/2022						nt Used:	GA 5000/Di	pmeter
Location:		lwade		Weather:		Cloudy,	5/8 cover					
Job No.		12775		Temp:		12	°C					
Monitoring Point No.	Time	O2 (% v/v)	CO2 (% v/v)	CH4 (% v/v)	H2S (PPM)	CO (PPM)	PID (PPM)	Flow (l/hr)	Differential Pressure (mbar)	Water (mbgl)		Site Observations/ Comments
WS1	12:22	18.5	1.3	0	0	0		-0.2		2.1		Barometric Pressure (mb)
WS2	12:14	17.5	2.4	0	0	0		-0.1		1.7	Time	
WS3	12:06	16.0	3.7	0	0	0		-0.1		1.7	12:05	1027
WS7	12:11	17.6	2.4	0	0	0		-0.2		1.9		
											Datum:	
											Ī	
												·
												·
												·
-												·

Tested by: JF Checked by: CSS mbgl = metres below ground level

Ground and Environmental Services Limited

		Accura	cy and range	of Gas Analyser 5000 (GA5000)
	Accu	racy		Range
Gas	Ga	s Concentrati	ons	
	0-5%	5-15%	0-FS	
CH₄	+/-0.5%	+/-3%		0-70% to specification, 0-100% reading
CO ₂	+/-0.5%	+/-3%		0-40% to specification, 0-100% reading
O ₂	+/-1%	+/-1%		0-25%
CO			+/-10%FS	0-500ppm
H ₂ S			+/-10%FS	0-200ppm
B.P.	+/- 5 mBar			700-1200 mBar
Flow:				

Notes:

CH4: methane in percent volume per volume (% v/v)

CO2: carbon dioxide in %v/v

O2: oxygen in % v/v

H2S: hydrogen sulphide in part per million (ppm)

CO: carbon monoxide in ppm B.P.: Barometric pressure in mBar Flow: Gas flow in litre per hour (I/h)

SOIL GAS SURVEY

Project:		11		Date: 11/02/2022		Equipment Used:		GA 5000/Di	ipmeter			
Location:		lwade		Weather:		Sunny, 1/8	cloud cover					
Job No.		12775		Temp:		13	°C					
Monitoring Point No.	Time	O2 (% v/v)	CO2 (% v/v)	CH4 (% v/v)	H2S (PPM)	CO (PPM)	PID (PPM)	Flow (l/hr)	Differential Pressure (mbar)	Water (mbgl)	Site Observations/ Comments	
WS1	13:16	19.1	1	0						1.9		Barometric Pressure (mb)
WS2	12:58	9.3	7.4	0.2						1.3	Time	
WS3	13:08	17.0	4.2	0						1.6	12:55	1033
WS7	13:22	17.8	2.6	0						1.8		
											Datum:	
Tested by:	sted by: JF mbgl = metres below ground level											

Tested by: JF Checked by: CSS

,.	 	~ ~	 ••	э.	 	 •	_
				_	 		

Notes:

Ground and Environmental Services Limited

CH4: methane in percent volume per volume (% v/v)

CO2: carbon dioxide in %v/v

O2: oxygen in % v/v

H2S: hydrogen sulphide in part per million (ppm)

CO: carbon monoxide in ppm B.P.: Barometric pressure in mBar Flow: Gas flow in litre per hour (I/h)

	Accuracy and range of Gas Analyser 5000 (GA5000)									
	Accu	racy		Range						
Gas	Ga	s Concentrat	ions							
	0-5%	5-15%	0-FS							
CH₄	+/-0.5%	+/-3%		0-70% to specification, 0-100% reading						
CO ₂	+/-0.5%	+/-3%		0-40% to specification, 0-100% reading						
O ₂	+/-1%	+/-1%		0-25%						
CO			+/-10%FS	0-500ppm						
H ₂ S			+/-10%FS	0-200ppm						
B.P.	+/- 5 mBar			700-1200 mBar						
Flow:										

SOIL GAS SURVEY

Project:	Land	off Sheppey	/ Way	Date: 18/02/2022		Equipme	Equipment Used: GA 5000/Dipmeter		pmeter			
Location:		lwade		Weather:	ther: Windy, cloudy, 7/8 cover							
Job No.		12775		Temp:		11	°C					
Monitoring Point No.	Time	O2 (% v/v)	CO2 (% v/v)	CH4 (% v/v)	H2S (PPM)	CO (PPM)	PID (PPM)	Flow (l/hr)	Differential Pressure (mbar)	Water (mbgl)		Site Observations/ Comments
WS1	10:13	20	02	0.1				0.1		1.95		Barometric Pressure (mb)
WS2	10:20	9.9	7.5	0				0		2.05	Time	
WS3	10:31	17.2	4.2	0				0		1.75	10:10	988
WS7	10:35	18.6	2.5	0				0		1.85		
											Datum:	
T												

Tested by: JF Checked by: CSS mbgl = metres below ground level

Ground and Environmental Services Limited

	Accuracy and range of Gas Analyser 5000 (GA5000)									
	Accu	racy		Range						
Gas	Gas Concentrations		ons							
	0-5%	5-15%	0-FS							
CH₄	+/-0.5%	+/-3%		0-70% to specification, 0-100% reading						
CO ₂	+/-0.5%	+/-3%		0-40% to specification, 0-100% reading						
O ₂	+/-1%	+/-1%		0-25%						
СО			+/-10%FS	0-500ppm						
H ₂ S			+/-10%FS	0-200ppm						
B.P.	+/- 5 mBar			700-1200 mBar						
Flow:										

Notes:

CH4: methane in percent volume per volume (% v/v)

CO2: carbon dioxide in %v/v

O2: oxygen in % v/v

H2S: hydrogen sulphide in part per million (ppm)

CO: carbon monoxide in ppm B.P.: Barometric pressure in mBar Flow: Gas flow in litre per hour (I/h)

APPENDIX 5 LABORATORY TEST RESULTS

Ground and Environmental Services Limited Unit 2 Montpelier Business Park Dencora Way Ashford Kent www.genvs.com E: info@genvs.com T: 01233 646237

Site: Iwade Project No: 12775

TN23 4FG

Client: Middlefields Ltd Date 10/02/2022

Date Received: 07/02/2022 **Date Tested:** 09/02/2022

Test Results

Location ID	Depth (m)	MC (%)	LL (%)	PL (%)	PI (%)	% passing 425 μm sieve	Classification	Sample type
WS 1	0.9-1.0	23	40	20	20	98	CI	D
WS 1	1.5-1.6	22	36	20	16	95	CI	D
WS 1	2.5-2.7	22	38	18	20	95	CI	D
WS 2	1.5-1.6	20	31	19	12	95	CL	D
WS 3	0.9-1.0	20	35	20	15	98	CL/CI	D
WS 3	1.5-1.6	23	34	21	13	95	CL	D
WS 4	0.9-1.0	23	41	21	20	98	CI	D
WS 4	2.5-2.7	22	41	18	23	95	CI	D
WS 5	0.9-1.0	23	37	22	15	98	CI	D
WS 5	1.5-1.6	21	35	18	17	95	CL/CI	D
WS 6	0.9-1.0	20	33	21	12	98	CL	D
WS 6	2.5-2.7	32	81	29	52	95	CV	D
WS 7	0.9-1.0	24	37	21	16	98	CI	D
WS 7	1.5-1.6	23	36	19	17	95	CI	D
WS 7	3.6-3.8	22	39	18	21	95	CI	D
WS 8	0.9-1.0	22	37	21	16	98	CI	D
WS 8	2.5-2.6	24	38	20	18	95	CI	D

Tested by: STP Checked by: CSS Approved by: CSS

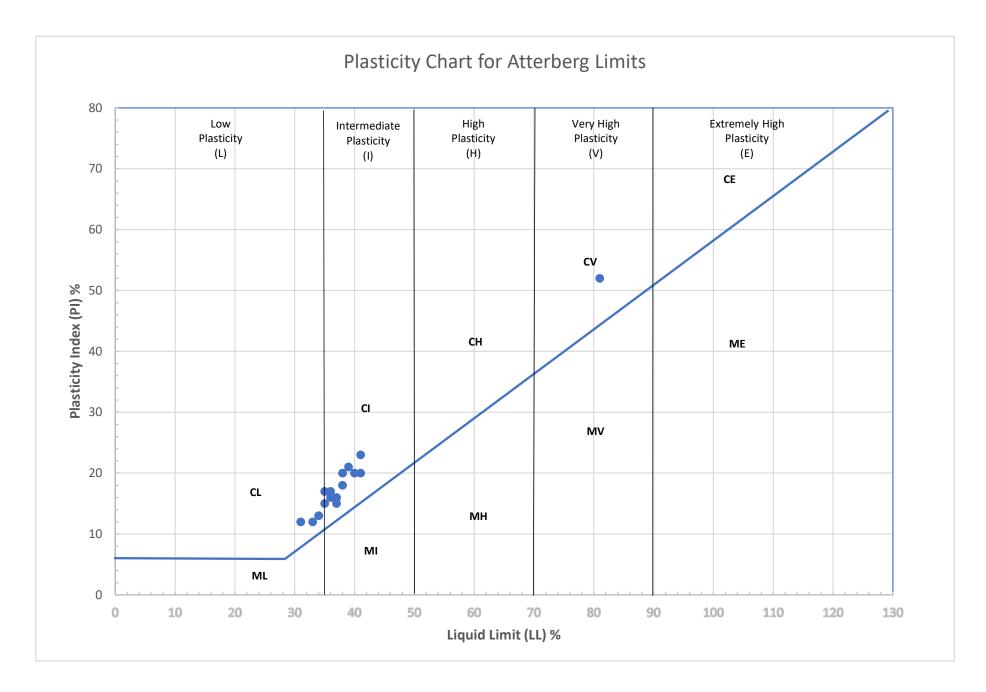
Ground and Environmental Services Limited Unit 2 Montpelier Business Park Dencora Way Ashford Kent

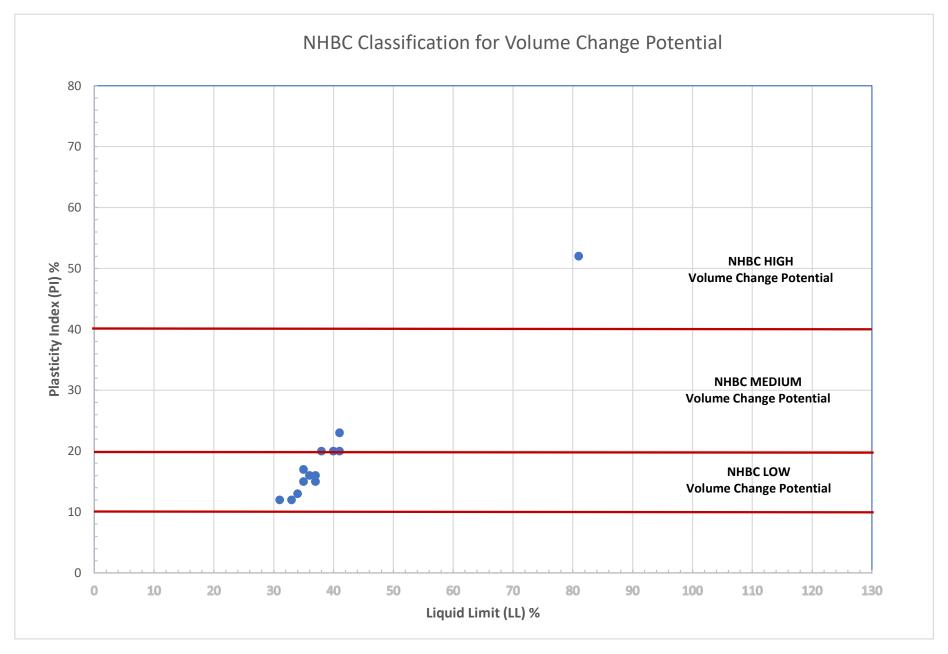
www.genvs.com E: info@genvs.com

T: 01233 646237

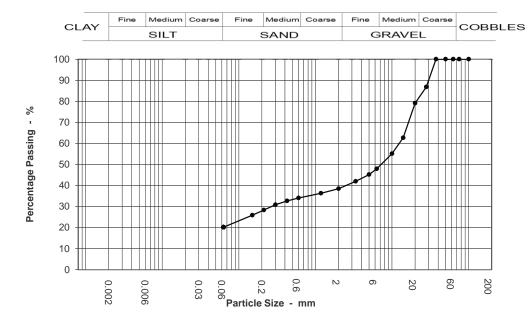
Site: Iwade Project No: 12775

TN23 4FG


Client: Middlefields Ltd Date 10/02/2022


07/02/2022 **Date Received:** Date Tested: 09/02/2022

Visual Descriptions


Location ID	Depth	Description
WS 1	0.9-1.0	Brown silty CLAY
WS 1	1.5-1.6	Brown very silty CLAY with occasional gravel
WS 1	2.5-2.7	Brown very silty CLAY with occasional gravel
WS 2	1.5-1.6	Brown very silty CLAY with occasional gravel
WS 3	0.9-1.0	Brown very silty CLAY
WS 3	1.5-1.6	Brown very silty CLAY with occasional gravel
WS 4	0.9-1.0	Brown silty CLAY
WS 4	2.5-2.7	Brown silty CLAY with occasional gravel
WS 5	0.9-1.0	Brown silty CLAY
WS 5	1.5-1.6	Brown very silty CLAY with occasional gravel
WS 6	0.9-1.0	Brown very silty CLAY
WS 6	2.5-2.7	Light orange with light grey silty CLAY with occasional gravel
WS 7	0.9-1.0	Brown very silty CLAY
WS 7	1.5-1.6	Brown very silty CLAY with occasional gravel
WS 7	3.6-3.8	Brown very silty CLAY with occasional gravel
WS 8	0.9-1.0	Brown very silty CLAY
WS 8	2.5-2.6	Brown very silty CLAY with occasional gravel

Tested by: STP Checked by: CSS Approved by: CSS

GE	PARTICLE SIZE DISTRIBUTION	Job Ref	12775	
75	BS 1377 : Part 2 : 1990 : Clause 9	Borehole / Pit No	WS 2	
Project	lwade	Sample No		
	Light tan silty sandy fine to coarse GRAVEL with some clay	Depth	3.6-3.8 m	
Soil Description	content	Sample type	В	

Sievii	ng	Sedimen	tation
Particle Size mm	% Passing	Particle Size mm	% Passing
75	100		
63	100		
50	100		
37.5	100		
28	87		
20	79		
14	63		
10	55		
6.3	48		
5	45		
3.35	42		
2	38		
1.18	36		
0.6	34		
0.425	33		
0.3	31		
0.212	28		
0.15	26		
0.063	20		

Test Method								
BS 1377 : Part 2 : 1990								
Sieving	Clause 9.2							
Sedimentation	N/A							

Sample Proportions						
Cobbles	0.0					
Gravel	61.5					
Sand	18.3					
Silt & Clay	20.2					

Grading Ana	alysis
D100	37.50
D60	12.590
D10	
Uniformity Coefficient	N/A

Operator	Checked	Approved	Remarks	
STP	CSS	CSS		

APPENDIX 6 ANALYTICAL TEST RESULTS

John Finch Ground & Environmental Services Ltd Unit 2 Montpelier Business Park Dencora Way Ashford Kent TN23 4FG

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 22-01101

Site Reference: Iwade

Project / Job Ref: 12775

Order No: GES/4693.12775

Sample Receipt Date: 07/02/2022

Sample Scheduled Date: 07/02/2022

Report Issue Number: 1

Reporting Date: 11/02/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.

Soil Analysis Certificate DETS Report No: 22-01101
Ground & Environmental Services Ltd **Date Sampled** 04/02/22 04/02/22 04/02/22 04/02/22 04/02/22 Time Sampled None Supplied None Supplied None Supplied None Supplied None Supplied Site Reference: Iwade Project / Job Ref: 12775 TP / BH No WS 1 WS 2 WS 3 WS 4 WS 5 **Additional Refs** None Supplied None Supplied None Supplied None Supplied None Supplied Order No: GES/4693.12775 Depth (m) 0.50 0.50 0.35 0.30 0.30 **DETS Sample No** Reporting Date: 11/02/2022

Determinand	Unit	RL	Accreditation					
Stone Content	%	< 0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
pH	pH Units	N/a	MCERTS	6.9	7.2	7.8	7.2	7.1
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	63	12	< 10	< 10
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	0.06	0.01	< 0.01	< 0.01
Organic Matter (SOM)	%	< 0.1	MCERTS	0.7	0.7	3.1	3.4	1.9
Arsenic (As)	mg/kg	< 2	MCERTS	8	10	11	10	10
Barium (Ba)	mg/kg	< 2.5	MCERTS	67	80	128	115	112
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.7	0.9	0.6	0.6	0.6
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	< 0.2	0.7	0.6	0.5
Chromium (Cr)	mg/kg	< 2	MCERTS	23	28	22	22	21
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	12	17	38	39	35
Lead (Pb)	mg/kg	< 3	MCERTS	11	13	83	80	96
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	19	22	17	16	14
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	< 3	< 3
Vanadium (V)	mg/kg	< 1	MCERTS	36	42	33	33	30
Zinc (Zn)	mg/kg	< 3	MCERTS	44	52	80	77	74
Mineral Oil (C10 - C40)	mg/kg	< 10	MCERTS	< 10	< 10	< 10	< 10	< 10

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate						
DETS Report No: 22-01101	Date Sampled	04/02/22	04/02/22	04/02/22	04/02/22	
Ground & Environmental Services Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Iwade	TP / BH No	WS 6	WS 7	WS 8	WAC	
Project / Job Ref: 12775	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: GES/4693.12775	Depth (m)	0.30	0.30	0.30	None Supplied	
Reporting Date: 11/02/2022	DETS Sample No	585134	585135	585136	585137	

Determinand	Unit	RL	Accreditation				
Stone Content	%	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Not Detected	Not Detected	
рН	pH Units	N/a	MCERTS	7.3	7.4	6.8	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	< 10	< 10	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	< 0.01	< 0.01	
Organic Matter (SOM)	%	< 0.1	MCERTS	3	2.4	1.9	
Arsenic (As)	mg/kg	< 2	MCERTS	9	9	10	
Barium (Ba)	mg/kg	< 2.5	MCERTS	110	91	100	
Beryllium (Be)	mg/kg	< 0.5	MCERTS	0.6	0.6	0.6	
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	< 1	
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.6	0.4	0.4	
Chromium (Cr)	mg/kg	< 2	MCERTS	22	21	20	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	
Copper (Cu)	mg/kg	< 4	MCERTS	35	33	31	
Lead (Pb)	mg/kg	< 3	MCERTS	83	85	87	
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
Nickel (Ni)	mg/kg	< 3	MCERTS	16	13	15	
Selenium (Se)	mg/kg	< 2	MCERTS	< 3	< 3	< 3	
Vanadium (V)	mg/kg	< 1	MCERTS	32	31	31	
Zinc (Zn)	mg/kg	< 3	MCERTS	78	70	69	
Mineral Oil (C10 - C40)	mg/kg	< 10	MCERTS	< 10	< 10	< 10	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate - Speciated PAHs						
DETS Report No: 22-01101	Date Sampled	04/02/22	04/02/22	04/02/22	04/02/22	04/02/22
Ground & Environmental Services Ltd	Time Sampled	None Supplied				
Site Reference: Iwade	TP / BH No	WS 1	WS 2	WS 3	WS 4	WS 5
Project / Job Ref: 12775	Additional Refs	None Supplied				
Order No: GES/4693.12775	Depth (m)	0.50	0.50	0.35	0.30	0.30
Reporting Date: 11/02/2022	DETS Sample No	585129	585130	585131	585132	585133

Determinand	Unit	RL	Accreditation					
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.17	< 0.1	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.44	< 0.1	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.40	< 0.1	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.14	< 0.1	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.16	< 0.1	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.23	< 0.1	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.14	< 0.1	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	1.7	< 1.6	< 1.6

Soil Analysis Certificate - Speciated PAHs					
DETS Report No: 22-01101	Date Sampled	04/02/22	04/02/22	04/02/22	
Ground & Environmental Services Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Iwade	TP / BH No	WS 6	WS 7	WS 8	
Project / Job Ref: 12775	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: GES/4693.12775	Depth (m)	0.30	0.30	0.30	
Reporting Date: 11/02/2022	DETS Sample No	585134	585135	585136	

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	0.14	< 0.1	< 0.1	
Pyrene	mg/kg	< 0.1	MCERTS	0.14	< 0.1	< 0.1	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	

Soil Analysis Certificate - EPH Banded (Typ	oe D)					
DETS Report No: 22-01101	Date Sampled	04/02/22	04/02/22	04/02/22	04/02/22	04/02/22
Ground & Environmental Services Ltd	Time Sampled	None Supplied				
Site Reference: Iwade	TP / BH No	WS 1	WS 2	WS 3	WS 4	WS 5
Project / Job Ref: 12775	Additional Refs	None Supplied				
Order No: GES/4693.12775	Depth (m)	0.50	0.50	0.35	0.30	0.30
Reporting Date: 11/02/2022	DETS Sample No	585129	585130	585131	585132	585133

Determinand	Unit	RL	Accreditation					
EPH (>C8 - C10)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
EPH (>C10 - C12)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
EPH (>C12 - C16)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
EPH (>C16 - C21)	mg/kg	< 1	MCERTS	< 1	< 1	1	< 1	< 1
EPH (>C21 - C35)	mg/kg	< 6	NONE	< 6	< 6	7	< 6	< 6
EPH (C8 - C35)	mg/kg	< 6	NONE	< 6	< 6	9	< 6	< 6

Soil Analysis Certificate - EPH Banded (Typ	oe D)				
DETS Report No: 22-01101	Date Sampled	04/02/22	04/02/22	04/02/22	
Ground & Environmental Services Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Iwade	TP / BH No	WS 6	WS 7	WS 8	
Project / Job Ref: 12775	Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: GES/4693.12775	Depth (m)	0.30	0.30	0.30	
Reporting Date: 11/02/2022	DETS Sample No	585134	585135	585136	

Determinand	Unit	RL	Accreditation				
EPH (>C8 - C10)	mg/kg	< 1	MCERTS	< 1	< 1	3	
EPH (>C10 - C12)	mg/kg	< 1	MCERTS	2	2	5	
EPH (>C12 - C16)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
EPH (>C16 - C21)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
EPH (>C21 - C35)	mg/kg	< 6	NONE	< 6	< 6	11	
EPH (C8 - C35)	mg/kg	< 6	NONE	< 6	< 6	19	

Tel: 01622 850410

Soil Analysis Certificate - Organochlorine I	Soil Analysis Certificate - Organochlorine Pesticides							
DETS Report No: 22-01101	Date Sampled	04/02/22	04/02/22					
Ground & Environmental Services Ltd	Time Sampled	None Supplied	None Supplied					
Site Reference: Iwade	TP / BH No	WS 3	WS 4					
Project / Job Ref: 12775	Additional Refs	None Supplied	None Supplied					
Order No: GES/4693.12775	Depth (m)	0.35	0.30					
Reporting Date: 11/02/2022	DETS Sample No	585131	585132					

		-					
Determinand			Accreditation				
Aldrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
alpha-HCH	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
beta-HCH	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
cis-chlordane	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
delta-HCH	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Dieldrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Endosulfan A	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Endosulfan B	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Endrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
gamma-HCH (Lindane)	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Heptachlor	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Heptachlor epoxide	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Hexachlorobenzene (HCB)	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Isodrin	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Methoxychlor	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
o,p' - DDD	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
o,p' - DDE	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
o,p' - DDT	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
p,p' - DDD	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
p,p' - DDE	mg/kg	< 0.02	NONE	0.05	< 0.02		
p,p' - DDT		< 0.02	NONE	< 0.02	< 0.02		
trans-chlordane	mg/kg	< 0.02	NONE	< 0.02	< 0.02		
Trifluralin	mg/kg	< 0.02	NONE	< 0.02	< 0.02		

DETS Report No: 22-01101		Date Sampled	04/02/22				Landfill Wast	te Acceptance (Criteria Limits
Ground & Environmental Servi	ices Ltd	Time Sampled	None Supplied						
Site Reference: Iwade		TP / BH No	WAC					Stable Non-	
Project / Job Ref: 12775		Additional Refs	None Supplied				Inert Waste Landfill	reactive HAZARDOUS waste in non-	Hazardous Waste
Order No: GES/4693.12775		Depth (m)	None Supplied				Lunami	hazardous Landfill	Landfill
Reporting Date: 11/02/2022		DETS Sample No	585137						
Determinand	Unit	MDL							
TOC ^{MU}	%		0.2				3%	5%	6%
Loss on Ignition	%		3.20						10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05				6		
Sum of PCBs	mg/kg	< 0.1	< 0.1				1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10				500		
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7				100		
pH ^{MU}	pH Units		7.5					>6	
Acid Neutralisation Capacity	mol/kg (+/-)		< 1					To be evaluated	To be evaluate
Eluate Analysis			2:1	8:1		Cumulative 10:1		for compliance N 12457-3 at I	
			mg/l	mg/l		mg/kg	9 20 2	(mg/kg)	-, o = o .,g
Arsenic ^U	1		< 0.01	< 0.01	i	< 0.2	0.5	2	25
Barium ^U	1		< 0.02	< 0.02		0.1	20	100	300
Cadmium ^U	1		< 0.0005	< 0.0005		< 0.02	0.04	1	5
Cadmium Chromium U	╡		< 0.005	< 0.005	 	< 0.02	0.04	10	70
Copper ^U	╡		< 0.003	< 0.003	 	< 0.20	2	50	100
<u>Copper </u> Mercury ^U	┨		< 0.005	< 0.01	1		0.01	0.2	2
	-		< 0.0005	< 0.0005		< 0.005	0.01	10	30
Molybdenum ^U	-				-	< 0.1			
Nickel ^U	4		< 0.007	< 0.007		< 0.2	0.4	10	40
Lead ^U	-		< 0.005	< 0.005		< 0.2	0.5	10	50
Antimony ^U	4		< 0.005	< 0.005		< 0.05	0.06	0.7	5
Selenium ^U	4		< 0.005	< 0.005		< 0.05	0.1	0.5	7
Zinc ^U	4		0.014	< 0.005		< 0.2	4	50	200
Chloride ^U	_		7	5		48	800	15000	25000
Fluoride ^U	_		0.7	0.5	ļ	5.4	10	150	500
Sulphate ^U	_		13	4	ļ	52	1000	20000	50000
TDS	_		113	79		824	4000	60000	100000
Phenol Index			< 0.01	< 0.01		< 0.5	1	-	-
PHEHOI THUEX						04.7	F00	800	1000
DOC DOC			7.4	8.6		84.7	500	800	
DOC			7.4	8.6		84.7	500	800	
			7.4	8.6		84.7	500	800	
DOC			7.4	8.6		84.7	500	800	
DOC			7.4	8.6		84.7	500	300	
DOC Leach Test Information			0.20	8.6		84.7	500	300	
DOC Leach Test Information Sample Mass (kg)				8.6		84.7	500	800	
Leach Test Information Sample Mass (kg) Dry Matter (%)			0.20 85.7	8.6		84.7	500	660	
DOC Leach Test Information Sample Mass (kg) Dry Matter (%) Moisture (%)			0.20	8.6		84.7	500	800	
DOC Leach Test Information Sample Mass (kg) Dry Matter (%) Moisture (%) Stage 1			0.20 85.7 16.8	8.6		84.7	500	600	
Sample Mass (kg) Dry Matter (%) Moisture (%) Stage 1 Volume Eluate L2 (litres)			0.20 85.7 16.8	8.6		84.7	500	800	
DOC Leach Test Information Sample Mass (kg) Dry Matter (%) Moisture (%) Stage 1			0.20 85.7 16.8	8.6		84.7	500	800	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Samples Descriptions page describes if the test is performed on the dried or asreceived portion
Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test
U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions

DETS Report No: 22-01101

Ground & Environmental Services Ltd

Site Reference: Iwade

Project / Job Ref: 12775

Order No: GES/4693.12775

Reporting Date: 11/02/2022

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
585129	WS 1	None Supplied	0.50	16.2	Light brown sandy clay
585130	WS 2	None Supplied	0.50	14.7	Brown sandy clay
585131	WS 3	None Supplied	0.35	16.6	Brown sandy clay
585132	WS 4	None Supplied	0.30	15.7	Brown sandy clay
585133	WS 5	None Supplied	0.30	14.7	Brown sandy clay
585134	WS 6	None Supplied	0.30	13.9	Brown sandy clay
585135	WS 7	None Supplied	0.30	15.9	Brown sandy clay
585136	WS 8	None Supplied	0.30	14.8	Brown sandy clay
585137	WAC	None Supplied	None Supplied	14.3	Brown sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm I/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-01101
Ground & Environmental Services Ltd

Site Reference: Iwade Project / Job Ref: 12775 Order No: GES/4693.12775 Reporting Date: 11/02/2022

Soil AR	Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil AR	Soil		Boron - Water Soluble	Determination of water soluble boron in soil by 2·1 bot water extract followed by ICP-OES	E012
Soil D Chicked - Water Soluble 22. Determination of catalons in soil by aqua-reasi adequation followed by ICP-QES En					E001
Soil AR Chronium - Heaviside (2.1) Determination of chloride by estraction with water & analysed by no chromatography Externition from the second process of the					E002
Soil AR Cyanide - Free Cyanide -		D			E009
Soil AR Consider Complex Soil AR Deseil Range Organics (C10 - C24) Determination of free complex by desibletion followed by colorimetry Soil Deseil Range Organics (C10 - C24) Determination of free complex by desibletion followed by colorimetry Soil AR Deseil Range Organics (C10 - C24) Determination of Peace and Peace Individual Programment Consideration Consideration Consideration Consideration Consideration Consideration Consideration Soil AR Electrical Consideration by October Consideration Cons	Cail	ΔD			E016
Soil AR Cyanide - Free Determination of free cyanide by dissillation followed by colorimetry Existing	5011	AK			E010
Soil AR Cyanide - Total Determination of total cyanide by distillation followed by colorimetry E	Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil D Cycloheane Extractable Nature (CEV) Government through extraction with cycloheane Extractable Nature (CEV) Government on Poson/governoe extractable hydrocarbons by GC-FID Extraction Conductivity					E015
Soil AR Diesel Range Organics (C10 - C24) Determination of hexace accordance extractable hydrocarbons by GC-FID					E015
Soil AR Bectrical Conductivity Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement between the control of the property of					E011
Soil AR Electrical Conductivity betermination of electrical conductivity by addition of water followed by electrometric measurement of the state of	Soil	AR	Diesel Range Organics (C10 - C24)		E004
Soil	Soil	AR	Electrical Conductivity		E022
Soil AR EPH (C10 - C40) Determination of actions/heane extractable hydrocarbons by GC-FID ER			,	, ,	E023
Soil AR EPH Product ID Determination of acetone/heane extractable hydrocarbons by GC-FID or R8 to C40, C6 to C8 by C8 C12-C16, C16-C21, C21-C40) headspace GC-MS EPH STAS (G6-C8), G8-C10, C10-C12, Determination of acetone/heane extractable hydrocarbons by GC-FID for R8 to C40, C6 to C8 by C12-C16, C16-C21, C21-C40) headspace GC-MS EPH STAS (G6-C8), G8-C10, C16-C21, C21-C30) D Fraction organic Carbon (F0C-C) Determination of TOC by combustion analyser. EPH STAS (G6-C8), G8-C10, C16-C21, C21-C36, C36-C8) EPH STAS (G6-C8), G8-C10, C16-C21, C21-C36, C36-C31, C36-C30) D TOC (Total Organic Carbon) Determination of TOC by combustion analyser. EPH STAS (G6-C8), G8-C10, C16-C21, C21-C36, C36-C30) D C16-C30 (G7-C30) D D C16-C30 (E020
Soil AR EPH TEXAS (G6-G8, G8-C10, C10-C12, Determination of acetone/hexane extractable hydrocarbons by GC-FID for G8 to C40, C6 to C8 by EC-C16, C16-C12, C12-C40, hexagoes GC-MS Soil D Fluoride - Water Soluble Determination of Tick by combustion analyser. Soil D Fraction Organic Cardon) Determination of Tick by combustion analyser. Soil D ToC (Total Organic Cardon) Determination of Tick by combustion analyser. Soil AR Exchangeable Ammonium Determination of Tick by combustion analyser. Soil D FOC (Fraction Organic Cardon) Determination of ammonium by discrete analyser. Soil D FOC (Fraction Organic Cardon) Determination of ammonium by discrete analyser. Soil D Magnesium - Water Soluble Determination of ammonium by discrete analyser. Soil D Magnesium - Water Soluble Determination of soil on signition in soil by gravimetrically with potassium dichromate followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Metals Determination of metals by agua - regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Soil AR Mineral Oil (C10 - C40) Soil D Mittate - Water Soluble (2:1) Determination of metals by agua - regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Soil D Mittate - Water Soluble (2:1) Determination of metals by agua - regia digestion followed by ICP-OES Soil AR Mineral Oil (C10 - C40) Soil D Mittate - Water Soluble (2:1) Determination of hexagoe-accenne extractable hydrocarbons by GC-FID fractionating with SPE cartridge Soil AR PAH - Speciated (FPA 16) Soil AR Phenols - Total (monophytic) Determination of phenols by extraction with water & analysed by ton chromatography Et Soil D Sulphate (as SO4) - Yoter Soluble (2:1) Determination of following the extraction with a section exity white are soluble soluble (2:1) Determination of regine interminat					E004
Soil D Fluoride - Water Soluble Carbon (FCD) Soil D Fraction Organic Carbon (FCD) Soil D Fraction Organic Carbon (FCD) Soil D Organic Matter (SOM) Soil D TOC (Total Organic Carbon (FCD) Soil D TOC (Total Organic Carbon (FCD) Soil D TOC (Total Organic Carbon) Soil D FOC (Fraction Organic Carbon) Soil D Soil D Loss on Ignition (# 450c) Soil D Loss on Ignition (# 450c) Soil D Loss on Ignition (# 450c) Soil D Magnesium - Water Soulce Soil AR Mineral Oil (C10 - C40) Metab Soil AR Mineral Oil (C10 - C40) Metab Soil AR Mosture content Mosture conten	Soil	AR			E004
Soil D Fraction Organic Carbon (FOC) Determination of TOC by combustion analyser. El	Soil	AR	C12-C16, C16-C21, C21-C40)	headspace GC-MS	E004
Soil D Organic Matter (SOM) Determination of TOC by combustion analyser. Expension of ToC by combustion analyser. Expension of ToC by combustion analyser. Expension of Source					E009
Soil D TOC (Total Organic Carbon) Determination of TOC by combustion analyser. Electronal Companies El			Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil AR Exchangeable Ammonium Determination of ammonium by discrete analyser. Exception D FOC (Fraction Organic Carbon) D Extermination of fraction of organic carbon by oxidising with potassium dichromate followed by tration with iron (II) sulphate Soil D Loss on Ignition @ 4500C Magnesium - Water Soluble Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a murfle Externion Soil D Magnesium - Water Soluble Determination of water soluble magnesium by extraction with water followed by ICP-OES Externion Ext					E027
Soil D			\ 3 /	, ,	E027
Soil D Loss on Ignition @ 450cc Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle [Loss on Ignition @ 450cc Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle [Loss on Ignition @ 450cc Determination of soccion of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle [Loss on Ignition @ 450cc Determination of water soluble magnesium by extraction with water followed by ICP-OES Electromination of metals by aqua-regia digestion followed by ICP-OES Electromination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE Cartridge Cartridge	Soil	AR	Exchangeable Ammonium		E029
Soil D Magnesium - Water Soluble (2-1) Soil D Magnesium - Water Soluble (2-1) Soil D Magnesium - Water Soluble (2-1) Soil AR Mineral Oil (C10 - C40) Soil D Nitrate - Water Soluble (2-1) Soil D Nitrate - Water Soluble (2-1) Soil D Nitrate - Water Soluble (2-1) Soil AR PAH - Speciated (EPA 16) Soil AR PAH - Speciated (EPA 16) Soil AR PAH - Speciated (EPA 16) Soil AR PEB - 7 Congeners Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards Soil AR PEB - 7 Congeners Determination of PAH compounds by extraction with petroleum ether Soil AR Petroleum Ether Extract (EPA 16) Soil AR Phenols - Total (monohydric) Determination of PAH compounds by extraction with petroleum ether Soil AR Phenols - Total (monohydric) Determination of PAH compounds by colorimetry Soil D Phosphate - Water Soluble (2:1) Determination of Phenols by distillation followed by clorimetry Soil D Sulphate (as SO4) - Total Obetermination of Phenols by extraction with water & analysed by ion chromatography Ef Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of Phenols by extraction with acetone and hexane followed by GC-MS Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of Phenols by distillation followed by clorimetry Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of by soluble sulphate by extraction with water & analysed by ion chromatography Ef Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Eff Soil D Sulphate (as SO4) - Total Determination of sulphate by extraction with water & analysed by ion chromatography Eff Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Eff Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extrac	Soil	D	FOC (Fraction Organic Carbon)	titration with iron (II) sulphate	E010
Soil AR				furnace	E019
Soil AR Moisture Content Moisture Conten					E025
Soil AR Moisture Content; determined gravimetrically Soil D Nitrate - Water Soluble (2:1) Determination of roganic matter by oxidising with potassium dichromate followed by titration with mater and internal standards Soil AR PAH - Speciated (EPA 16) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate Soil AR PAH - Speciated (EPA 16) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate Soil AR PAH - Speciated (EPA 16) Determination of organic matter by oxidising with potassium dichromate followed by GC-MS with the use of surrogate and internal standards Soil AR PAH - Speciated (EPA 16) Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS betermination of PCB by extraction with acetone and hexane followed by GC-MS betermination of PCB by extraction with acetone and hexane followed by GC-MS betermination of PCB by extraction with acetone and hexane followed by GC-MS betermination of PCB by extraction with acetone and hexane followed by GC-MS betermination of PCB by extraction with acetone and hexane followed by GC-MS betermination of PCB by extraction with acetone and hexane followed by GC-MS betermination of PCB by extraction with water acetone and hexane followed by GC-MS betermination of PCB by extraction with water acetone and hexane followed by GC-MS betermination of phenols by distillation followed by CD-DES betermination of Suphate by extraction with water acetone and hexane followed by GC-MS betermination of suphate by extraction with water acetone and hexane followed by GC-MS betermination of suphate by extraction with water acetone and hexane followed by GC-MS betermination of suphate by extraction with acetone and hexane followed by GC-MS betermination of suphate by extraction with acetone and hexane followed by GC-MS betermination of semi-volatile organic compounds by extraction with patch acetone and hexane followed by GC-MS addition of f	Soil	D	Metals	7 1 3 3 7	E002
Soil D Nitrate - Water Soluble (2:1) Determination of nitrate by extraction with water & analysed by ion chromatography Ei	Soil	AR	, ,	cartridge	E004
Determination of organic matter by oxidising with potassium dichromate followed by titration with fron (III) sulphate (Soil AR PAH - Speciated (EPA 16)	Soil	AR			E003
Soil AR PAH - Speciated (EPA 16) Soil AR PCB - 7 Congeners Determination of PCB by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by GC-MS Et Soil AR PCB - 7 Congeners Determination of PCB by extraction with petroleum ether Ether CRES (PEE) Grammetrically determined through extraction with petroleum ether Ether CRES (PEC) Grammetrically determined from with petroleum ether Ether CRES (PEC) Grammetrically determined followed by colorimetry Soil AR Phenols - Total (monohydric) Determination of pH by addition of water followed by electrometric measurement Ether CRES (PEC) (PE	Soil	D	Nitrate - Water Soluble (2:1)		E009
Soil AR PCB - 7 Congeners Determination of PCB by extraction with acetone and hexane followed by GC-MS Soil AR PCB - 7 Congeners Determination of PCB by extraction with petroleum ether Soil AR Phenols - Total (monohydric) Determination of pH by addition of water followed by electrometric measurement Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by electrometry Soil D Phosphate - Water Soluble (2:1) Determination of phenols by distillation followed by electrometry Soil D Sulphate (as SO4) - Total Determination of phosphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water solubles sulphate by extraction with water followed by ICP-OES Soil AR Sulphate (as SO4) - Water Soluble (2:1) Determination of water solubles sulphate by extraction with water followed by ICP-OES Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by volorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Determination of ferric nitrate followed by volorimetry Soil AR Thiocyanate (as SCN) The CWG (ali: CS- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C34, arc: C5-C7, C7-C8	Soil	D	Organic Matter	iron (II) sulphate	E010
Soil D Petroleum Ether Extract (PEE) Gravimetrically determined through extraction with petroleum ether Eff. Soil AR Phenols - Total (monohydric) Determination of pH by addition of water followed by electrometric measurement Eff.	Soil	AR	, , ,	use of surrogate and internal standards	E005
Soil AR Phenols - Total (monohydric) Determination of ph by addition of water followed by electrometric measurement Ei					E008
Soil AR Phenols - Total (monohydric) Determination of phenols by distillation followed by colorimetry Ed					E011
Soil D Phosphate - Water Soluble (2:1) Determination of phosphate by extraction with water & analysed by ion chromatography Ed					E007
Soil D Sulphate (as SO4) - Total Determination of total sulphate by extraction with 10% HCI followed by ICP-OES Eff.					E021
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of sulphate by extraction with water & analysed by ion chromatography E(Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES E(Soil AR Sulphide Sulphide Sulphide Determination of sulphide by distillation followed by colorimetry E(Soil AR SVCC Sulphide Sulphide Sulphide Determination of sulphide Sulphide Determination of sulphide Sulphide Sulphide Determination of sulphide Sulphid					E009
Soil D Sulphate (as SO4) - Water Soluble (2:1) Determination of water soluble sulphate by extraction with water followed by ICP-OES EC					E013
Soil AR Sulphide Determination of sulphide by distillation followed by colorimetry Edition					E009
Soil D Sulphur - Total Determination of total sulphur by extraction with aqua-regia followed by ICP-OES SVOC Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C10-C12, C10-C12, C10-C12, C10-C12, C10-C12, C10-C12, C10-C12,					E014
Soil AR Thiocyanate (as SCN) Soil AR Thiocyanate (as SCN) Soil D Toluene Extractable Matter (TEM) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Soil AR THI CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) AR THI LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) THI LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) THI LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8,					E018
Soil AR Thiocyanate (as SCN) Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Final Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C10-C12, C10-C12, C10-C12, C10-C12, C10-C12, C10-C12, C10-C12,			Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and became followed by	E024
Soil AR Thiocyanate (as SCN) addition of ferric nitrate followed by colorimetry Soil D Toluene Extractable Matter (TEM) Gravimetrically determined through extraction with toluene Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (III) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) AR TPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C31, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C31, C35-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C31, C35-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C31, C35-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C31, C35-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C31, C35-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C10-				GC-MS	E006
Soil D Total Organic Carbon (TOC) Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) PTH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS ECC.			, , ,	addition of ferric nitrate followed by colorimetry	E017
Soil AR TPH LQM (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS Etc.	2011	U	Toluene Extractable Matter (TEM)		E011
Soil AR C10-C12, C12-C16, C16-C21, C21-C34, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C35. C5 to C8 by headspace GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E(C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) E(C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) E(C10-C12, C12-C16, C16-C21, C10-C12, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) E(C10-C12, C12-C16, C16-C21, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Soil	D	Total Organic Carbon (TOC)		E010
Soil AR C10-C12, C12-C16, C16-C35, C35-C44, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE aro: C5-C7, C7-C8, C8-C10, C10-C12, cartridge for C8 to C44. C5 to C8 by headspace GC-MS C12-C16, C16-C21, C21-C35, C35-C44) Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS	Soil	AR	C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	
Soil AR VOCs Determination of volatile organic compounds by headspace GC-MS E0 Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID F0			C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil AR VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FTD F6	Soil		VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
	Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

4480

Water Analysis Certificate - Methodology & Miscellaneous Information	Water Anal	ysis Certificate - Methodolo	gy & Miscellaneous Information
--	------------	------------------------------	--------------------------------

DETS Report No: 22-01101
Ground & Environmental Services Ltd

Site Reference: Iwade Project / Job Ref: 12775 Order No: GES/4693.12775 Reporting Date: 11/02/2022

On No Water UF Alkalinity potentination of alkalinity by titration against hydrochloric acid using bromocresol green as the end point. Water F Ammoniacal Nitrogen Determination of IETX by hearispace GC-HS E126 Water UF Ammoniacal Nitrogen Determination of IETX by hearispace GC-HS E126 Water UF Chordical Oxygen Demand (CCO) Determination of IETX by hearispace GC-HS E120 Water F Chomical Oxygen Demand (CCO) Determination of IETX by hearispace GC-HS E120 Water F Chomical Oxygen Demand (CCO) Determination of IETX by hearispace GC-HS E120 Water F Chomical Oxygen Demand (CCO) Determination of Indicate by Illiferion & analyzed by indication, addition of 1,3 dipherylcarbaside followed by CCO (CCO) E119 Water UF Cycnide- Complex Oxygenic - Total Determination of Indicate Complex (varied by Illiferion & analyzed by indication) and Indicate American (Control oxygenic CCO) Determination of Indicating destraction (Indicating destraction with expendition of Indicating destraction with hearis followed by Colorimetry E115 Water UF Cyclohexane Extractable Mater (CPM) Grain (CCM) Extraction (CCM) Extracti	Matrix	Analysed	Determinand	Brief Method Description	Method
Valeter F Ammoniacal Nitrocen Determination of BTEX by headspace GC-MS Valeter UF BTEX Determination of BTEX by headspace GC-MS Valeter UF Chemical Oxygen Demand (COD) Determination of BTEX by headspace GC-MS Valeter UF Chemical Oxygen Demand (COD) Determination of actions by litration followed by colorimetry E101 Valeter UF Chemical Oxygen Demand (COD) Determination using a COD reactor followed by colorimetry E102 Valeter F Chomium - Heavavient Determination of actions by litration and anyse by ion chromatography Valeter UF Cyanide - Tree Determination of chines by litration as nanysed by ion chromatography Valeter UF Cyanide - Tree Determination of the cyanide by distillation followed by colorimetry Valeter UF Cyanide - Tree Determination of the cyanide by distillation followed by colorimetry Valeter UF Cyclohexane Extrachibide - Treal Determination of the cyanide by distillation followed by colorimetry Valeter UF Cyclohexane Extrachibide - Treal Determination of the cyanide by distillation followed by colorimetry Valeter UF Cyclohexane Organics (Cit C-CE) Determination of the cyanide by distillation followed by colorimetry Valeter F Dissolved Organic Content (DOC) Determination of the cyanide by distillation followed by GC-FID Valeter F Dissolved Organic Content (DOC) Determination of liquid-liquid extraction with hearts followed by GC-FID Valeter F Dissolved Organic Content (DOC) Determination of liquid-liquid extraction with hearts followed by GC-FID Valeter F Dissolved Organic Content (DOC) Determination of liquid-liquid extraction with hearts followed by GC-FID Valeter F Dissolved Organic Content (DOC) Determination of liquid-liquid extraction with hearts followed by GC-FID Valeter F Dissolved Organic Content (DOC) Determination of liquid-liquid extraction with hearts followed by GC-FID Valeter F Dissolved Organic Content (DOC) Valeter F Dissolved Organic C		On			No
Water UF Chemical Oxygen Demand (COD) Determination of BTEX by headspace CC-MS Water UF Chemical Oxygen Demand (COD) Determination using a COD reactor followed by clorimetry E112 Water F Chemical Oxygen Demand (COD) Determination using a COD reactor followed by colorimetry E112 Water F Chomium - Heavalent Determination of chief by fiftration & analysed by ion chromatography E119 Water UF Cyanide - Free Determination of recomplex permination of complex variety by distillation followed by colorimetry E115 Water UF Cyanide - Free Determination of free cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Free Determination of free cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Free Determination of free cyanide by distillation followed by colorimetry E115 Water UF Cychokane Extractable Matter (CEM) Gravimetrically determined through liquid-liquid extraction with cychokanea E1111 Water F Desel Range Organics (CID - C24) Determination of DOC by filtration followed by Low GC-FID Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by Low GC-FID Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by Low GC-FID or CS to C40. C6 to C8 by E1104 Water F Dissolved Organic Content (DOC) Determination of liquid-liquid extraction with heaver followed by GC-FID or CS to C40. C6 to C8 by E1104 Water F EPH TEXAS (C6-C8, C8-C1, C10-C12). Determination of liquid-liquid extraction with heaver followed by GC-FID or CS to C40. C6 to C8 by E1104 Water F EPH TEXAS (C6-C8, C8-C1, C10-C12). Determination of liquid-liquid extraction with heaver followed by GC-FID or CS to C40. C6 to C8 by E1104 Water F EPH TEXAS (C6-C8, C8-C1, C10-C12). Determination of liquid-liquid extraction with heaver followed by GC-FID or CS to C40. C6 to C8 by E1104 Water F EPH TEXAS (C6-C8, C8-C10, C10-C12). Determination of liquid-liquid extraction with heaver followed by GC-FID or CS to C40. C6 to C8 by More Analysed by Ion chromatography E11	Water	UF	Alkalinity	, , , , , , , , , , , , , , , , , , , ,	E103
Water F Chemical Dxygen Demand (COD) Determination of Cathons by filtration followed by (CP-MS Water F Chemical Dxygen Demand (COD) Determination using a COD reactor followed by colorimetry F Chemical Dxygen Demand (COD) Determination of Color Pactor followed by colorimetry F Chemical Dxygen Demand (COD) Determination of Chemical Dxygen Demand (COD) Determination of Package (CP-MS) Water UF Cyanide - Complex Determination of Albridge by distillation followed by colorimetry F Cyanide - Complex Determination of complex cyanide by distillation followed by Colorimetry F Cycloreane Extractable Matter (CEM) Gyanide by distillation followed by Colorimetry F Cycloreane Extractable Matter (CEM) Gyanide cyanide by distillation followed by Colorimetry F Cycloreane Extractable Matter (CEM) Gyanide cyanide by distillation followed by Colorimetry F Cycloreane Extractable Matter (CEM) Gyanide Cycloreane Cyanide by Gyanide by Gyanide by Gyanide With Cycloreane Extractable Matter (CEM) Gyanide Cycloreane Extractable Matter (CEM) Gyanide Cyanide by Gyanide by Gyanide With Cycloreane Extractable Matter (CEM) Gyanide Cyanide by Gyanide by Gyanide With Cycloreane Extractable Matter (CEM) Gyanide Cycloreane With Extractable Matter (CEM) Gyanide Cycloreane Followed by Gyanide With Cycloreane Extractable Matter (CEM) Gyanide Cycloreane Followed by Gyanide With Extractable Matter (CEM) Gyanide Cycloreane Followed by Gyanide	Water	F	Ammoniacal Nitrogen	Determination of ammoniacal nitrogen by discrete analyser.	E126
Water UF Chemical Oxygen Demand (COD) Determination of London Experimentation of London by Illitation an analysed by in chromatography Entity Water F Chromium - Hexavalent Determination of none of the pilitation (and pilitation) and addition of 1,5 diphenykarabazide followed by CPII (Condition) E115 Water UF Chromium - Hexavalent Determination of none of the condition	Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101
Water UF Chemical Davgen Demand (CDD) Determination of Individe by filtration & analysed by ion chromatography E112 Water F Chromium - Hexavalent Determination of Individe by filtration & analysed by ion chromatography E119 Water F Chromium - Hexavalent Determination of complex cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Tree Determination of rongble xyanide by distillation followed by colorimetry E115 Water UF Cyanide - Tree Determination of India and Layanide by distillation followed by colorimetry E115 Water UF Cyanide - Tree Determination of India and Layanide by distillation followed by colorimetry E115 Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined on the development on with exace followed by Go-FID E110 Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by low heat with persuphate addition followed by Individual devaluation with exace followed by GC-FID E110 Water F EPH TEXAS (CS-G-8, CS-IC, O) (10-C12), Determination of Flux distribution with exace followed by GC-FID for C8 to C40, C6 to C8 by E104 Water F EPH TEXAS (CS-G-8, CS	Water	F			E102
Water F Chloride Determination of character in Easayalent Chromium Presavalent	Water	UF			E112
Water F Chronium - Hexavalent Determination of hexavalent chromium by addification, addition of 1,5 diphenylcarbazide followed by Water UF Cyanide - Trace Determination of complex cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Total Determination of the cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Total Determination of 104 cyanide by distillation followed by colorimetry E115 Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determinated by distillation followed by Co-FID E114 Water F Dissolved Organic Content (DOC) Determination of 104 cyanide by distillation followed by GC-FID E114 Water F Dissolved Organic Content (DOC) Determination of 104 cyanide by distillation followed by GC-FID E114 Water F Dissolved Organic Content (DOC) Determination of 104 cyanide by GE-FID E114 Water F Dissolved Organic Content (DOC) Determination of 104 cyanide by GE-FID E114 Water F E115 Electrical Conductivity Determination of 104 by determination of 104 by GE-FID E114 Water F EPH EXAS (C6-63, 8-10, C10-C12, Determination of 104 cyanide by GE-FID Determination of 104 cyanide by GE-FID F104 Cyanide Cyanid		F			E109
Water UF Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Free Determination of Free Cyanide by distillation followed by colorimetry E115 Water UF Cyclohexane Extractable Matter (EM) Water F Diesel Range Organics (C10 - C24) Diesel Range Organics		F			
Water UF Cyanide - Free Determination of Free Cyanide by distillation followed by Colorimetry E115 Water UF Cyanide - Total Determination of total cyanide by distillation followed by Colorimetry E115 Water F Diese Range Organics (C10 - C24) Determination of Inquid-Inquid extraction with volchexane E111 Water F Diese Range Organics (C10 - C24) Determination of Inquid-Inquid extraction with volchexane followed by GC-FID E114 Water F Diese Range Organics (C10 - C24) Determination of Inquid-Inquid extraction with resumply and the property of the C10 - C20 Determination of Inquid-Inquid extraction with resumply addition followed by IR determination of Inquid-Inquid extraction with hexane followed by GC-FID E114 Water F EPH TEXAS (C6-C8, C8-C10, C10-C12) Determination of Inquid-Inquid extraction with hexane followed by GC-FID E114 Water F EPH TEXAS (C6-C8, C8-C10, C10-C12) Determination of Inquid-Inquid extraction with hexane followed by GC-FID For C8 to C40, C6 to C8 by E1104 Water F END E1104 Externation of C10 Externation of Inquid-Inquid extraction with hexane followed by GC-FID For C8 to C40, C6 to C8 by E1104 Water F END E1104 Externation of C2 and Mg by IC2-MS followed by C4-FID For C8 to C40, C6 to C8 by E1104 Water F Leachate Preparation - NRA Based on SEM 12457 PTL, 2, 3 E302 Water F Mineral OI (C10 - C40) Determination of Inquid-Inquid extraction with hexane followed by GC-FID E1102 Water F Mineral OI (C10 - C40) Determination of Inquid-Inquid extraction with hexane followed by GC-FID For C8 to C40, C6 to C8 by E1104 Water F Mineral OI (C10 - C40) Determination of Inquid-Inquid extraction with hexane followed by GC-FID For Mnondhydric Phenol Determination of PAH compounds by IC2-MS followed by GC-FID For Nitrate Determination of Inquid-Inquid extraction with hexane followed by GC-FID For Nitrate Determination of PAH compounds by Concentration through SPE cartridge, collection in dichloromethane followed by GC-FID For PAH - Suphake Suph		UF			E115
Water UF Cyclohoxane Extractable Matter (ZPM) Grayment-cally determined through liquid-liquid extraction with cyclohexane £115 Water F Diesel Range Organics (C10 - C24) Determination of liquid-liquid extraction with hexane followed by GC-FID £104 Water F Dissolved Organic Content (DCC) Determination of liquid-liquid extraction with hexane followed by GC-FID £104 Water UF Dissolved Organic Content (DCC) Determination of liquid-liquid extraction with hexane followed by GC-FID £115 Water F Dissolved Organic Content (DCC) Determination of liquid-liquid extraction with hexane followed by GC-FID £112 Water F EPH TEXAS (GC-G3, G8-C10, C10-C12) Determination of electrical conductivity by electrometric measurement £123 Water F EPH TEXAS (GC-G3, G8-C10, C10-C12) Determination of liquid-liquid extraction with hexane followed by GC-FID for G8 to C40. C6 to C8 by £104 Water F EPH TEXAS (GC-G3, G8-C10, C10-C12) Determination of Inquid-liquid extraction with hexane followed by Calculation £105 Leachate Preparation - NAB assect on National Reverse Authority of the Capture of Capture Preparation - NAC assect on National Reverse Authority (GC-G3) Entermination of Inquid-liq		UF			
Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined through liquid/iguid extraction with cyclohexane E111					
Water F					
Water F Dissolved Organic Content (DOC) Determination of DoC by filtration followed by low heat with persulphate addition followed by IR dete £110 Water F EPH CIA — C40) Determination of leguid-illouid extraction with hexane followed by GC-FID £104 Water F EPH TEXAS (GG-Ca, C8-C10, C10-C12, Determination of liquid-illouid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by C12-C16, C16-C21, C21-C40) £104 Water F FILLOGAC (GG-Ca, C8-C10, C10-C12, C21-C40) E104 Water F FILLOGAC (GG-CA, C8-C10, C10-C12) E104 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Metals Determination of Indical State State State State State State State					
Water UF					
Water F					
Water F Honor Control (CF-CR), C10-C12, Determination of liquid: liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F Honor F Hon			FPH (C10 = C40)	Determination of liquid-liquid extraction with hexare followed by GC-FID	
Water F F Fluoride Determination of Fluoride by filtration & analysed by ion chromatography E109 Water F Hardness Determination of Ca and Mg by ICP-MS followed by calculation E102 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Mineral Oil (C10 - C40) Determination of reals by filtration followed by ICP-MS E102 Water F Mineral Oil (C10 - C40) Determination of intrate by filtration & analysed by ion chromatography E109 Water UF Monohyric Phenol Determination of intrate by filtration & analysed by ion chromatography E109 Water UF Monohyric Phenol Determination of intrate by filtration & analysed by ion chromatography E109 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through inquid: liquid extraction with petroleum ether E111 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through inquid: liquid extraction with petroleum ether E111 Water UF Redox Potential Determination of Phosphate by filtration & analysed by ion chromatography E109 Water UF Sulphate (as SOH) Determination of Phosphate by filtration & analysed by ion chromatography E109 Water UF Sulphate (as SOH) Determination of Phosphate by filtration & analysed by ion chromatography E109 Water UF Tolluene Extractable Matter (TEM) Gravimetrically determined through liquid: liquid extraction with tolluene T113 Water UF Tolluene Extractable Matter (TEM) Gravimetrically determined through by IR detectrometric measurement E111 Water UF Tolluene Extractable Matter (TEM) Gravimetrically determined through liquid: liquid extraction with tolluene T110 TPH CWG (ali: CS-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, C35-C34, C35-C34, C36-C34, C36-C35, C35-C44, Determination of sulphide by distillation followed by IR detectio			EDH TEYAS (C6-C8 C8-C10 C10-C12	Determination of liquid-liquid extraction with hexare followed by GC-ED for C8 to C40, C6 to C8 by	
Water F Eluoride Place Hardness Determination of Fluoride by filtration & analysed by ion chromatography £109 Water F Hardness Determination of Ca and Mg by ICP-MS followed by calculation £102 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 £301 Leachate F Leachate Preparation - WAC Based on National Rivers Authority leaching test 1994 £301 Water F Leachate Preparation - WAC Based on National Rivers Authority leaching test 1994 £301 Water F Meland Marker Determination of Path 25 by filtration Ranalysed by 10CP-MS £102 Water F Mineral Oil (C10 - C40) Determination of Path 25 by filtration Ranalysed by 10CP-MS £110 Water F Mondrydric Phenol Determination of Inquidiliquid extraction with pervalence for Phenol Phenol Determination of Phenol Sby distillation followed by colorimetry £121 Water F PAH - Speciated (EPA 16) Determination of Phenol Sby distillation followed by colorimetry £121 Water F Petroleum Ether Extract (PEE) Gravimetrically determined through liquid-liquid extractio	Water	F			E104
Water F	Water				E100
Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 Eachate F Leachate Preparation - WAC Based on BS EN 12457 Ptl, 2, 3 Water F Metals Determination of metals by filtration followed by ICP-MS E102 Water F Mineral Oil (C10 - C40) Determination of liquid:liquid extraction with hexane followed by GI-FID E104 Water F Monohydric Phenol Determination of liquid:liquid extraction with hexane followed by GI-FID E104 Water UF Monohydric Phenol Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water F PAH - Speciated (EPA 16) dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimentically determined through by GE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (PEE) Gravimentically determined through lideliquid extraction with petroleum ether E111 Water UF Phosphate Determination of ph by electrometric measurement E107 Water F Phosphate Determination of ph by electrometric measurement E107 Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimentane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimentane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimentically determined through followed by colorimetry E118 Water UF Toluene Extractable Matter (TEM) Gravimentically determined through followed by colorimetry E119 E1104 Water UF Toluene Extractable Matter (TEM) Gravimentically determined through followed by colorimetry E119 E1105 C10-C12, C12-C16, C16-C21, C21-C34, Determination of sulphide by distillation followed by C00 formetry E119 E1106 Water UF C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid: liquid extraction with h					
Leachate					
Water F Metals Determination of metals by filtration followed by CI-PMS E102 Water F Mineral Oil (C10 - C40) Determination of liquid:liquid extraction with hexane followed by GI-FID E104 Water F Nitrate Determination of nitrate by filtration & analysed by ion chromatography E109 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E105 Water F PCB - 7 Congenes* Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E105 Water UF Petroleum Ether Extract (PEE) Gravinetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Petroleum Ether Extract (PEE) Gravinetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Phosphate Determination of phosphate by filtration & analysed by ion chromatography E109 Water F Phosphate Determination of redox potential by electrometric measurement E113 Water F Sulphide Determination of sulphide by filtration & analysed by ion chromatog					
Water F Mineral Oil (C10 - C40) Determination of liquid:liquid extraction with hexane followed by GI-FID E104					
Water F Nitrate Determination of nitrate by filtration & analysed by ion chromatography E109 Water UF Monohydric Phenol Determination of phenols by distillation followed by colorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH componds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E105 Water F PCB - 7 Congeners Determination of PAH componds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E105 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Phosphate Determination of PDB compounds by concentration with petroleum ether E1107 Water F Phosphate Determination of phosphate by filtration & analysed by ion chromatography E109 Water F Sulphate (as SO4) Determination of redox potential by electrometric measurement E113 Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E109 Water F Total Organic Carbon (TOC) Determinat					
Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water F PETOLEUM Ether Extract (FEE) Gravimetrically determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Petroleum Ether Extract (FEE) Gravimetrically determined through liquid-liquid extraction with petroleum ether E1108 Water UF Petroleum Ether Extract (FEE) Gravimetrically determined through liquid-liquid extraction with petroleum ether E1108 Water UF Phosphate Determination of pH by electrometric measurement E107 Water UF Redox Potential Determination of phosphate by filtration & analysed by ion chromatography E109 Water UF Sulphiate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphiate Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphiate Determination of sulphide by distillation followed by colorimetry E118 Water UF Toluene Extractable Matter (TEM) Determination of sulphide by distillation followed by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid-liquid extraction with toluene E111 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C35, C35-C44) Water UF VPH (C6-C8 & C8-C10) Determination of volatile organic compounds by headspace GC-MS Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS E101					
Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS dichloromethane followed by GC-MS (E105) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS (E104) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS (E104) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS (E104) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS (E104) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS (E104) Determination of PAH compounds by concentration with petroleum ether (E104) Determination of PAH compounds by Concentration Determination of PAH compounds Determination Determination of PaH compounds Determination Det					
Water F PCB - 7 Congeners Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal E108 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Phosphate Determination of pH by electrometric measurement E107 Water F Phosphate Determination of phosphate by filtration & analysed by ion chromatography E109 Water UF Redox Potential Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphide Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphide Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphide Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphide Determination of sulphate by filtration & analysed by ion chromatography E109 Determination of sulphide by distillation followed by colorimetry E118 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E100 TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C3-C34, arc: C5-C7, C7-C8, C8-C3-C34, arc: C5-C7, C7-C8, C8-C10, C10-C12, C3-C34, arc: C5-C7, C7-C8, C8-C3-C34, arc: C5-C7, C7-C3-C3-C34, arc: C5-C7, C7-C3-C3-C34, arc:	water	UF	Mononyaric Phenoi	Determination or pnenois by distillation followed by colorimetry	E121
WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFDetermination of ph by electrometric measurementE107WaterUFRedox PotentialDetermination of phosphate by fellertation & analysed by ion chromatographyE109WaterFSulphate (as SO4)Determination of redox potential by electrometric measurementE113WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterFSulphideDetermination of sulphate by filtration & analysed by ion chromatographyE109WaterFSulphideDetermination of sulphate by filtration & analysed by ion chromatographyE109WaterFSulphideDetermination of sulphate by filtration & analysed by ion chromatographyE109WaterFToluene Extractable Matter (TEM)Determination of sulphate by filtration & analysed by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE106WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE111WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C31, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C	Water	F	PAH - Speciated (EPA 16)		E105
WaterUFpHDetermination of pH by electrometric measurementE107WaterFPhosphate Determination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox PotentialDetermination of redox potential by electrometric measurementE113WaterFSulphate (as SO4)Determination of redox potential by electrometric measurementE113WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphideDetermination of sulphate by filtration & analysed by ion chromatographyE118WaterFSulphideDetermination of sulphate by filtration & analysed by ion chromatographyE118WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid: indiction followed by colorimetryE106WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid: indiction followed by Commentation of semi-volatile organic compounds by indiction with followed by IR detectionE111WaterFToluene Extractable Matter (TEM)Gravimetrically determined through liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C3 to C35. C5 to C8 by headspace GC-MSE104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C35-C35-C44,	Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethal	E108
WaterFPhosphate Redox Potential Determination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox Potential Determination of redox potential by electrometric measurementE113WaterFSulphate (as SO4) Sulphate (as SO4) Sulphide Determination of sulphide by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4) Sulphide Sulphide Determination of sulphide by distillation followed by colorimetryE118WaterFSVOC WaterDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE106WaterUFToluene Extractable Matter (TEM) Water (Tem)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C35, C35-C44,	Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
WaterFPhosphate Redox Potential Determination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox Potential Determination of redox potential by electrometric measurementE113WaterFSulphate (as SO4) Sulphide Determination of sulphate by filtration & analysed by ion chromatographyE108WaterUFSulphide Determination of sulphide by distillation followed by colorimetryE118WaterUFToluene Extractable Matter (TEM) WaterDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE106WaterUFTotal Organic Carbon (TOC) Uo Meat with persulphate addition followed by IR detectionE111WaterTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C21-C35, C35-C44, aro: C5-C7, C7-C8, C	Water	UF	hd	Determination of pH by electrometric measurement	E107
Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphide Determination of sulphide by distillation followed by colorimetry E118 Water F SVOC Determination of sulphide by distillation followed by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C14, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C35. C5 to C8 by headspace GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C8 to C35. C5 to C8 by headspace GC-MS TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MS Water UF VOCS Determination of volatile organic compounds by headspace GC-MS E101 Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E101	Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109
WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphideDetermination of sulphide by distillation followed by colorimetryE118WaterFSVOCDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE106WaterUFToluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC) Low heat with persulphate addition followed by IR detectionE110WaterTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C14, C34, C12-C15, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MSE104WaterUFVOCS Determination of volatile organic compounds by headspace GC-MSE101WaterUFVPH (C6-C8 & C8-C10)Determination of hydrocarbons C6-C8 by headspace GC-MSE101	Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water UF Sulphide Determination of sulphide by distillation followed by colorimetry Water F SVOC Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) Water F TH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C35, C35-		F			
Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water F TH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44) Water UF VPH (C6-C8 & C8-C10) Determination of volatile organic compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the compounds by headspace GC-MS & C8-C10 by GC-FID for between the calculation of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID for between the calculation of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID for between the calculation of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID for between the calculation of hydrocarbons C6-C8 by headspace GC-MS					
Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) Water F TH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101 Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID by GC-FID E111 E111 E112 E113 E114 E115 E116 E116 E117 E117 E117 E118 E118 E119		F	•	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection	
Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection FH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C12-C16, C16-C21, C21-C35) Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101 Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID by GC-FID E101 E102 E103 E104 E105 E106 E107 E107 E107 E108 E109 E109 E109 E109 E109 E109 E101	Water	HE	Toluene Extractable Matter (TEM)		F111
Water F TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35) Water UF VPH (C6-C8 & C8-C10) Water UF VPH (C6-C8 & C8-C10) Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for Bettermination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Water UF VPH (C6-C8 & C8-C10) Determination of volatile organic compounds by headspace GC-MS & C8-C10 by GC-FID bettermination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID by GC-FID E101					
Water F C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35) Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35) TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C35, C35-C44) Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44) Determination of volatile organic compounds by headspace GC-MS Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E101	water	UI UI	Total Organic Carbon (TOC)	Low fleat with persulphate audition followed by In detection	LIIU
Water F C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for arc: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MS Water UF VPH (C6-C8 & C8-C10) Determination of volatile organic compounds by headspace GC-MS E101 Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E101	Water	F	C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104
Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E101		·	C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	
Key		UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered **UF Unfiltered**

Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit	
тос	Soil	BS EN 12457	20.0	%	
Loss on Ignition	Soil	BS EN 12457	35.0	%	
BTEX	Soil	BS EN 12457	14.0	%	
Sum of PCBs	Soil	BS EN 12457	23.0	%	
Mineral Oil	Soil	BS EN 12457	9.0	%	
Total PAH	Soil	BS EN 12457	11.6	%	
pH	Soil	BS EN 12457	0.28	Units	
Acid Neutralisation Capacity	Soil	BS EN 12457	18.0	%	
Arsenic	Leachate	BS EN 12457	18.7	%	
Barium	Leachate	BS EN 12457	11.6	%	
Cadmium	Leachate	BS EN 12457	20.3	%	
Chromium	Leachate	BS EN 12457	18.3	%	
Copper	Leachate	BS EN 12457	24.3	%	
Mercury	Leachate	BS EN 12457	23.7	%	
Molybdenum	Leachate	BS EN 12457	14.7	%	
Nickel	Leachate	BS EN 12457	16.1	%	
Lead	Leachate	BS EN 12457	15.7	%	
Antimony	Leachate	BS EN 12457	17.9	%	
Selenium	Leachate	BS EN 12457	22.0	%	
Zinc	Leachate	BS EN 12457	17.4	%	
Chloride	Leachate	BS EN 12457	15.3	%	
Fluoride	Leachate	BS EN 12457	16.4	%	
Sulphate	Leachate	BS EN 12457	20.6	%	
TDS	Leachate	BS EN 12457	12.0	%	
Phenol Index	Leachate	BS EN 12457	14.0	%	
DOC	Leachate	BS EN 12457	10.0	%	
Clay Content	Soil	BS 3882: 2015	15.0	%	
Silt Content	Soil	BS 3882: 2015	14.0	%	
Sand Content	Soil	BS 3882: 2015	13.0	%	
Loss on Ignition	Soil	BS 3882: 2015	35.0	%	
pH	Soil	BS 3882: 2015	0.14	Units	
Carbonate	Soil	BS 3882: 2015	16.0	%	
Total Nitrogen	Soil	BS 3882: 2015	12.0	%	
Phosphorus (Extractable)	Soil	BS 3882: 2015	24.0	%	
Potassium (Extractable)	Soil	BS 3882: 2015	20.0	%	
Magnesium (Extractable)	Soil	BS 3882: 2015	26.0	%	
Zinc	Soil	BS 3882: 2015	14.9	%	
Copper	Soil	BS 3882: 2015	16.0	%	
Nickel	Soil	BS 3882: 2015	17.7	%	
Available Sodium	Soil	BS 3882: 2015	23.0	%	
Available Calcium	Soil	BS 3882: 2015	23.0	%	
Electrical Conductivity	Soil	BS 3882: 2015 10.0			

Craig Spanton Ground & Environmental Services Ltd Unit 2 Montpelier Business Park Dencora Way Ashford Kent TN23 4FG

Derwentside Environmental Testing Services Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

DETS Report No: 22-01246

Site Reference: Iwade

Project / Job Ref: 12775

Order No: GES/4695.12775

Sample Receipt Date: 09/02/2022

Sample Scheduled Date: 09/02/2022

Report Issue Number: 1

Reporting Date: 14/02/2022

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 22-01246	Date Sampled	07/02/22	07/02/22	07/02/22	07/02/22	
Ground & Environmental Services Ltd	Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Iwade	TP / BH No	WS1	WS2	WS3	WS7	
Project / Job Ref: 12775	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: GES/4695.12775	Depth (m)	0.90 - 1.00	1.50 - 1.60	1.50 - 1.60	0.90 - 1.00	
Reporting Date: 14/02/2022	DETS Sample No	585676	585677	585678	585679	

Determinand	Unit	RL	Accreditation					
pН	pH Units	N/a	MCERTS	7.4	7.8	7.9	7.3	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	< 10	27	36	< 10	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	< 0.01	0.03	0.04	< 0.01	

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 22-01246	
Ground & Environmental Services Ltd	
Site Reference: Iwade	
Project / Job Ref: 12775	
Order No: GES/4695.12775	
Reporting Date: 14/02/2022	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
585676	WS1	None Supplied	0.90 - 1.00	16.4	Light brown clay
585677	WS2	None Supplied	1.50 - 1.60	15.1	Light brown clay
585678	WS3	None Supplied	1.50 - 1.60	16.6	Light brown clay
585679	WS7	None Supplied	0.90 - 1.00	16.5	Light brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\rm I/S}$ Unsuitable Sample $^{\rm U/S}$

Soil Analysis Certificate - Methodology & Miscellaneous Information

DETS Report No: 22-01246
Ground & Environmental Services Ltd

Site Reference: Iwade
Project / Job Ref: 12775
Order No: GES/4695.12775
Reporting Date: 14/02/2022

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR		Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil Soil	D AR		Gravimetrically determined through extraction with cyclohexane Determination of hexane/acetone extractable hydrocarbons by GC-FID	E011 E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 - C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E010
Soil	D D	Loss on Ignition @ 450oC	furnace	E019
Soil Soil	D D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES Determination of metals by aqua-regia digestion followed by ICP-OES	E025 E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil Soil	D AR		Determination of water soluble sulphate by extraction with water followed by ICP-OES Determination of sulphide by distillation followed by colorimetry	E014 E018
Soil	D D	Culabum Tatal	Distriction of the late of the late of the second of the s	E018
Soil	AR	SVOC	Determination of total sulpnur by extraction with aqua-regia followed by ICP-DES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

APPENDIX 7 GUIDELINES ON CONTAMINANT LEVELS

Human Health

CLEA Soil Guideline values (SGV)

The UKs primary contaminated land guidance is contained within the Contaminated Land Exposure Assessment (CLEA) framework. Within this framework a number of Soil Guideline Values (SGVs) were published for key contaminants along with toxicological guideline values relating to intake thresholds. The soil guideline values provided by the CLEA model represent intervention values for end uses based upon potential human exposure and soil concentrations of a contaminant above these values might represent an unacceptable risk to the health of the site users. The Environment Agency had an ongoing programme of SGV publication with associated toxicological information for key contaminants. Where SGVs are available then they should be used as the basis for any human health risk assessment.

All CLEA SGVs were withdrawn for use by the Environment Agency in 2008 whilst they are under review and pending the availability of new toxicological data. To date, new SGV values have been set for benzene, toluene, ethylbenzene and xylene and mercury and selenium. In the absence of the new SGVs and toxicological report data, GES have used appropriate screening tools or Generic Assessment Criteria Levels as assessment criteria guidelines for those determinands not currently assigned SGVs. It should be noted that the former SGVs for metals were in general agreement with those site specific levels generated by RBCA and other similar computer model based risk assessment tools.

The GES screening assessment of contaminants within samples has been carried out using these model generated values in the absence of any other values or guidelines. The version of the CLEA model, v1.06, was used. The published SGVs are shown below. Nickel SGV has been withdrawn (2015) pending an assessment of the toxicological data used in the model for nickel. Published SGV values.

	Soil Guideline Value (mg kg ⁻¹)								
Land use	Residential	Allotment	Commercial						
Inorganic arsenic	32	43	640						
Nickel	130	230	1,800						
Cadmium	10	1.8	230						
Phenol	420	280	3200						
Elemental Hg	1	26	26						
Inorganic Hg	170	80	3600						
Methyl Hg	11	8	410						
Selenium	350	120	13,000						
Benzene	0.33	0.07	95						
Toluene	610	120	4400						
Ethylbenzene	350	90	2800						
o-Xylene	250	160	2600						
r-Xylene	240	180	3500						
m-Xylene	230	160	3200						

Based on a sandy loam soil as defined in Environment Agency (2009b) and 6% SOM.

DEFRA Category four screening level (C4SL)

In addition to the SGVs, guideline screening values proposed in the DEFRA document SP1010-Development of Category 4 Screening Levels for Assessment of Land affected by Contamination Final Project Report (C4SL) are considered along with the suitable for use levels (S4USL) derived by the Chartered Institute of Environmental Health (CIEH) in partnership with the Land Quality Management Organization (LQM). The screening levels are given for residential, commercial, allotment or public open space end uses.

PARAMETER	Residential With Without		Commercial	Allotment	Public open Space near residential POS _{resi}	Public park land POS _{park}	Sources	
	Plant uptake	Plant uptake						
Inorganics - mg/kg unless stat	ed							
Arsenic (inorganic)	37	40	640	49	79	170	DEFRA C4SL	
Beryllium	1.7	1.7	12	35	2.2	63	LQM/S4USL	
Boron	290	11,000	240,000	45	21,000	46,000	LQM/CIEH	
Cadmium	22	150	410	3.9	220	880	LQM/S4USL	
Chromium III	910	910	8,600	18,000	1,500	33,000	LQM/CIEH	
Chromium VI	21	21	49	170	21	250	LQM/S4USL	
Copper	2,400	7,100	68,000	520	12,000	44,000	LQM/CIEH	
lead	200	310	2,300	80	630	1,300	DEFRA C4SL	
Mercury (Inorganic)	40	56	1,100	19	120	240	LQM/CIEH	
Nickel	180	180	980	230	230	3,400	LQM/CIEH	
Selenium	250	430	12,000	88	1,100	1,800	LQM/CIEH	
Vanadium	410	1,200	9,000	91	2,000	5,000	LQM/CIEH	
Zinc	3,700	40,000	730,000	620	81,000	170,000	LQM/CIEH	
Total sulphate	2400	2400	2400	2400	2400	2400	BRE (2005)	
Water-soluble sulphate (g/l)	0.5	0.5	0.5	0.5	0.5	0.5	BRE (2005)	
рН	<5	<5	<5	<5	<5	<5	-	

CLEA does not currently provide guidance for total Polycyclic Aromatic Hydrocarbons (PAHs). A standalone Defra C4SL for benzo(a)pyrene has been assigned and is shown below. In addition, the Chartered Institute of Environmental Health (CIEH) in partnership with the Land Quality Management Organization (LQM) used CLEA software to derive Generic Assessment Criteria (GAC) and Assessment Sub Criteria (ASC) for the following PAH compounds:

	Residential														
DADAMETED	With Plant uptake		Without				Alledonad		РО	РО					
PARAMETER SOM %	P	2.5	аке 6	P	lant uptal	(e 6	1	Commercia 2.5	6	Allotment 1 2.5 6		S	S	Sauraa	
Organics - mg/kg unless	e stated	2.5	0	1	2.3	0	1	2.3	0	1	2.5	6	resi	park	Source
															CLEA/LQM
Acenaphthene	200	490	1080	2000	3600	5200	75000	92000	100000	34	85	202			CIEH CLEA/LQM
Acenaphthylene	170	400	900	2000	3600	5200	76000	92000	100000	28	68	163			CIEH
Anthracene	2300	5400	10700	30000	34000	36000	520000	530000	540000	380	947	2230			CLEA/LQM CIEH
Benzo(a)anthracene	7.5	11	13	12	14	15	170	170	180	2.9	6.5	13			CLEA/LQM CIEH
Benzo(a)pyrene C4SL			5			5.3			77			5.7	10	21	DEFRA C4SL
Benzo(b)fluoranthene	2.6	3.3	3.7	3.9	4	4	44	45	45	1	2.2	3.9			CLEA/LQM CIEH
Benzo(g,h,i)perylene	315	340	350	360	360	360	3900	4000	4000	290	480	646			CLEA/LQM CIEH
Benzo(k)fluoranthene	77	93	100	110	110	110	1200	1200	1200	37	76	129			CLEA/LQM CIEH
Chrysene	15	22	27	30	31	32	350	350	350	4.1	9.5	19			CLEA/LQM CIEH
Dibenzo(a,h)anthracene	0.24	0.28	0.3	0.31	0.32	0.32	3.5	3.6	3.6	0.14	0.27	0.44			CLEA/LQM CIEH
Fluoranthene	280	560	890	1500	1600	1600	23000	23000	23000	52	127	288			CLEA/LQM CIEH
Fluorene	165	390	850	2200	3400	4200	60000	67000	70000	27	67	158			CLEA/LQM CIEH
Indeno(1,2,3-cd)pyrene	27	36	41	45	46	46	500	510	510	9.5	21	40			CLEA/LQM CIEH
Naphthalene	1	2.3	5.5	1	2.4	6	100	260	600	4	9.8	23			CLEA/LQM CIEH
Phenanthrene	95	220	440	1300	1400	1500	22000	22000	23000	15	38	90			CLEA/LQM CIEH
Pyrene	620	1200	2000	3700	3800	3800	54000	54000	55000	11	271	620			CLEA/LQM CIEH

Petroleum Hydrocarbons represent a complex situation being a mixture of a range of compounds, the relative concentrations of which may change over time.

As discussed above, Generic Assessment Criteria (GAC) for total petroleum hydrocarbons according to both their molecular weight and chemical structure and also for a range of soil organic matter (SOM) content values have been derived using CLEA software.

The LQM CIEH GACs are again presented according to their soil organic matter content and proposed end use of the land. The generic assessment criteria for a 1%, 2.5% and 6% SOM content are tabulated below and presented according to the proposed end use.

				LQM CIEH	Generic	Assessr	nent Criter	ia (mg/kg d	Iry weight :	soil)			
		Reside			ntial			Allotment Land Use			Commercial Land Use		
	Wit	h Plant U	Jptake	Withou	t Plant U	ptake							
SOM %	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	
Aliphatic													
EC 5 – 6	24	40	80	24	40	80	752	1730	3900	2400	4000	8000	
EC > 6 - 8	52	110	250	52	110	250	2304	5580	13000	5200	11000	25000	
EC > 8 - 10	13	30	70	13	30	70	321	770	1700	1300	3000	7000	
EC > 10 - 12	60	150	360	60	150	360	2153	4300	7150	6000	15000	32000	
EC > 12 - 16	500	1200	2600	500	1200	2600	10800	12400	13200	42000	72000	90000	
EC > 16 - 35	4100	6900	94000	41000	6900	9400	240000	260000	260000	140000	160000	180000	
EC > 35 - 44	4100	0 6900	94000	41000	0 6900	9400	240000	260000	260000	140000	160000	180000	
	0	0			0	0							
Aromatic													
EC 5 - 7 (benzene)	50	110	240	155	300	630	12	25	57	15000	28000	55000	
EC > 7 - 8	100	240	550	370	800	1800	21	50	117	33000	68000	130000	
(toluene) EC > 8 - 10	20	50	110	20	53	125	8.6	21	50	2000	5000	120000	
EC > 10 - 12	63	150	340	120	280	650	12.5	31	74	11000	22000	31000	
EC > 12 - 16	140	320	660	1100	1900	2300	23	57	134	35000	37000	38000	
EC > 16 - 21	260	540	930	1800	1900	1900	47	112	260	28000	28000	28000	
EC > 21 - 35	1100	1400	1700	1900	1900	1900	370	820	1500	28000	28000	28000	
EC > 35 - 44	1100	1400	1700	1900	1900	1900	370	820	1500	28000	28000	28000	
		l		1	l	ı.		I	1		1	1	
Benzene	0.06	0.13	0.3	0.16	0.3	0.64	0.016	0.033	0.073	15	28	57 (98)	
DEFRA C4SL			(0.87)			(3.3)			(0.18)			,	
Toluene	104	240	550	370	830	1800	22	50	117	33000	68000	130000	
Ethylbenzene	30	62	150	34	81	190	16	38	91	3200	7000	16000	
o-xylene	30	70	170	40	90	200	28	67	160	3700	8000	19000	
m-xylene	30	70	160	34	80	190	30	74	170	3400	8000	18000	

TPH values calculated using CLEA v1.06 with parameter changes in accord with DEFRA (2014) C4SL and LQM/CIEH (2015)

180

80

Inert Material

The limit values for inert waste are given in the EC Landfill Directive 1999/31/EC as applied under the Environmental Permitting (England and Wales) (Amendment) (EU Exit) Regulations 2019 (*Sl* 2019/39) and as defined by the council decision establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC(2003/33/EC).

The regulations and associated guidance provide waste acceptance criteria, which set the limits of contaminants permitted in various waste categories going to landfill. These criteria are of particular use where CLEA guidance or DEFRA Screening values has not yet been provided.

Inert waste is defined as waste which contains insignificant potential for pollution and does not endanger the quality of surface water or groundwater. The Landfill Directive states that inert waste will not adversely affect other matter with which it comes into contact in a way likely to give rise to environmental pollution or harm human health.

For risk assessment purposes we would consider that any materials (soils) containing concentrations of potential contaminants that would result in them being classified as inert would be considered as uncontaminated and therefore representing a low risk to human health.

Similarly, such material would not be considered to represent a significant risk to water resources.

Where CLEA or Defra screening values exist, these would always be used in preference to inert waste values when assessing risks to human health.

Selected inert waste acceptance criteria as given in Council Decision 2003/33/EC establishing criteria and procedures for the acceptance of waste at landfills for the Landfill Directive are given below.

Landfill acceptance criteria for inert waste (mg/kg)							
Total organic carbon (TOC)	30,000						
BTEX compounds	6						
Mineral oils (C10 – C40)	500						
PCBs	1						
PAH	100						

Risks to Plants

The CLEA framework does not provide a method for the assessment of phytotoxic risks to plants. However maximum permissible concentrations have been published in the Sludge (Use in Agriculture) Regulations 1989 (SI 1989, No. 1263). This legislation enforces the provisions of the EC Directive 86/278/EEC for potentially toxic elements (PTEs) on soils for agricultural use where sewage sludge has been applied (see table below). These limits relate to the potential risk to plants and not human health for which CLEA is the overriding risk assessment model.

Maximum permissible concentration in agricultural soils following sewage sludge application (mg/kg).										
pH pH pH pH 5.0<5.5 5.5<6.0 6.0-7.0 >7.0										
Zinc	200	250	300	450						
Copper 80 100 135 200										
Nickel	50	60	75	110						

Risks to buried concrete

The potential risks to buried concrete can be assessed by reference to the BRE Special Digest 1 (SD1) entitled 'Concrete in Aggressive Ground'. This document provides a methodology for the specification of concrete based on the ground conditions encountered and is based upon chemical analysis and associated factors (e.g. groundwater). The guidance provides a Design Sulphate Class (DS) based upon the ground conditions and it is considered that a low concentration of sulphate and pH (i.e. DS-1 and DS-2) is considered to represent a low risk to buildings.

Risks to buried services

In addition, where water is supplied in plastic pipes which could come into contact with contaminated ground then this can lead to premature failures, resulting in leakage and loss of water quality. Risks to water supply pipes are assessed using guidance published by the UK Water Industry Research (UKWIR) entitled 'Guidance for the Selection of Water Pipes to be used in Brownfield Sites' (Report Ref. No. 10/WM/03/21). This is known as the UKWIR guidance.

Previous guidance from WRAS has been withdrawn but may still be in use by certain water supply companies. In general water companies have adopted a common set of guidelines as given in the *Contaminated Land Assessment Guidance from January 2014.*

Additional threshold values for determining pipe material have also been published by certain water supply companies. If these threshold values are exceeded then consideration should be given to the selection of pipe material or to the use of barrier pipes. The UKWIR threshold values, together with those of certain water supply companies are presented in the table below for a range of potential hazards.

Substance ⁽¹⁾	Water UK Guidance	Thames Water
Total VOC	0.5	-
Total BTEX & MTBE	0.1	0.1 or either
Total SVOC	2	-
EC5-EC10 aliphatic and aromatic hydrocarbons	2	-
EC5-EC12 aliphatic hydrocarbons		0.5
EC5-EC12 aromatic hydrocarbons		0.5
EC10-EC16 aliphatic and aromatic hydrocarbons	10	-
EC12-EC21 aliphatic hydrocarbons		10
EC12-EC21 aromatic hydrocarbons		10
EC16-EC40 aliphatic and aromatic hydrocarbons	500	-
EC21-EC35 aliphatic hydrocarbons		500
EC21-EC35 aromatic hydrocarbons		500
Phenois	2	5*
Cresols and chlorinated phenols	2	2
Naphthalene	-	5
Ethers	0.5	-
Nitrobenzene	0.5	-
Ketones	0.5	-
Aldehydes	0.5	-
Amines	0	-
	#	
Corrosives pH and EC	##	

All units mg kg-1 in soil; # pH <7 for wrapped steel, pH <5 wrapped ductile iron and copper and ##EC >400µS/cm; *Phenol limit at 2mg/kg in presence of BTEX.