APPENDIX 4.0 – PROPOSED MASTERPLAN

0 5 10 15	20 25	12 Unit Scheme:	Reason:	Date:	Client: KENT COUNTY COUNCIL	dha urban design
		6 x 3-Bedroom Semi-Detached Houses (Plots 4-5, 7-8, 11-12 @ 95sgm / 1023 sgft)				diban design
Metres (1:500)		3 x 4-Bedroom Detached Houses			Project: LAND OFF LONGACRE ROAD,	Eclipse House, Eclipse Park. Sittingbourne Road Maidstone, Kent. ME14 3EN
N		(Plots 1, 9-10 @ 117sqm / 1259 sqft)			PRIMARY SCHOOL, ASHFORD, KENT	t: 01622 776226 f: 01622 776227 e: info@dhaplanning.co.uk w: www.dhaplanning.co.uk
Site Area: 0.43 Hectares		3 x 4-Bedroom Detached House (Plots 2-3, 6 @ 120sqm / <i>1292 sqf</i> t)			Title: PROPOSED SITE LAYOUT PLAN	No reproduction by any method of any part of this document is permitted without the consent of the copyright holders. Produced for Town and Country planning purposes only.
						© Crown Copyright 2017. All rights reserved. Licence Number: 100031961
					Drawing: Rev: Scale: Date: DHA/11170/103 - 1:500 MAY 2017	CAD Reference: 11170 - Application Drawings April 2017 - LS A3

APPENDIX 5.0 – SITE GEOLOGY AND INFILTRATION ASSESSMENT

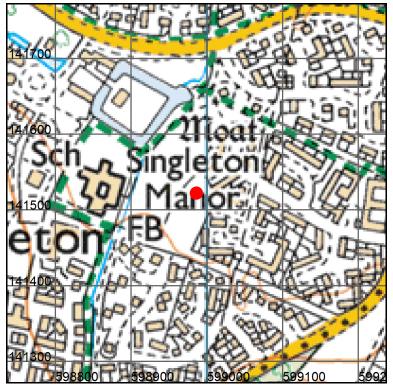
British Geological Survey

Spencer Smith DHA Planning Eclipse House Eclipse Park Sittingbourne Road Maidstone Kent ME14 3EN

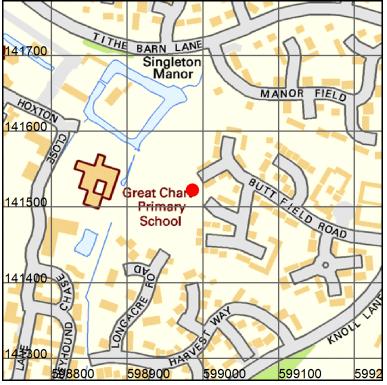
Infiltration SuDS GeoReport:

This report provides information on the suitability of the subsurface for the installation of infiltration sustainable drainage systems (SuDS). It provides information on the properties of the subsurface with respect to significant constraints, drainage, ground stability and groundwater quality protection.

GeoReports


Report Id: GR_215836/1

Client reference: Great Chart - PO- 5533


Search location

Point centred at: 598986,141522

Search location indicated in red

This product includes mapping data licensed from Ordnance Survey. © Crown Copyright and/or database right 2017. Licence number 100021290 EUL Scale: 1:5 000 (1cm = 50 m)

Contains Ordnance Survey data 0 Crown Copyright and database right 2017 OS Street View: Scale: 1:5 000 (1cm = 50 m)

Assessment for an infiltration sustainable drainage system

Introduction

Sustainable drainage systems (SuDS) are drainage solutions that manage the volume and quality of <u>surface water</u> close to where it falls as rain. They aim to reduce flow rates to rivers, increase local water storage capacity and reduce the transport of pollutants to the water environment. There are four main types of SuDS, which are often designed to be used in sequence. They comprise:

- o source control: systems that control the rate of runoff
- o pre-treatment: systems that remove sediments and pollutants
- o retention: systems that delay the discharge of water by providing surface storage
- o infiltration: systems that mimic natural recharge to the ground.

This report focuses on infiltration SuDS. It provides subsurface information on the properties of the ground with respect to drainage, ground stability and groundwater quality protection. It is intended principally for those involved in the preliminary assessment of the suitability of the ground for infiltration SuDS, and those involved in assessing proposals from others for sustainable drainage, but it may also be useful to help house-holders judge whether or not further professional advice should be sought. If in doubt, users should consult a suitably-qualified professional about the results in this report before making any decisions based upon it.

This GeoReport is structured in two parts:

• Part 1. Summary data.

Comprises three maps that summarise the data contained within Part 2.

• Part 2. Detailed data.

Comprises a further 24 maps in four thematic sections:

- Very significant constraints. Maps highlight areas where infiltration may result in adverse impacts due to factors including: ground instability (soluble rocks, non-coal shallow mining and landslide hazards); persistent shallow groundwater, or the presence of made ground, which may represent a ground stability or contamination hazard.
- Drainage potential. Maps indicate the drainage potential of the ground, by considering subsurface permeability, depth to groundwater and the presence of floodplain deposits.
- Ground stability. Maps indicate the presence of hazards that have the potential to cause ground instability resulting in damage to some buildings and structures, if water is infiltrated to the ground.
- Groundwater protection. Maps provide key indicators to help determine whether the groundwater may be susceptible to deterioration in quality as a result of infiltration.

This report considers the suitability of the subsurface for the installation of infiltration SuDS, such as soakaways, infiltration basins or permeable pavements. It provides subsurface data to indicate whether, and which type of infiltration system may be appropriate. It does not state that infiltration SuDS are, or are not, appropriate as this is highly dependent on the design of the individual system. This report therefore describes the subsurface conditions at the site, allowing the reader to determine the suitability of the site for infiltration SuDS.

The map and text data in this report is similar to that provided in the '*Infiltration SuDS Map: Detailed*' national map product. For further information about the data, consult the '*User Guide for the Infiltration SuDS Map: Detailed*', available from <u>http://nora.nerc.ac.uk/16618/</u>.

PART 1: SUMMARY DATA

This section provides a summary of the data on the following pages.

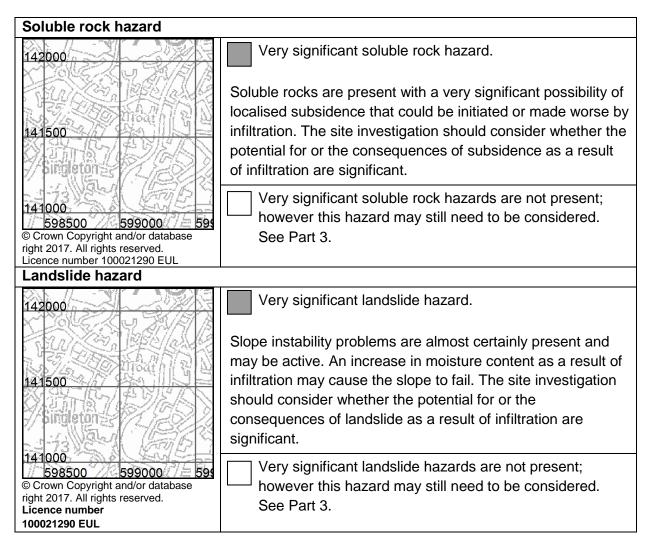
•	ry of the data on the following pages. ntial, is the ground suitable for infiltration SuDS?
in terms of the dramage poter	
142000	Highly compatible for infiltration SuDS.
	The subsurface is likely to be suitable for free-draining infiltration SuDS.
LAS 15 TO LIDOR NO.	Probably compatible for infiltration SuDS.
41500 Singleton 41000	The subsurface is probably suitable although the design
	may be influenced by the ground conditions.
	Opportunities for bespoke infiltration SuDS.
© Crown Copyright and/or database right 2017. All rights reserved.	The subsurface is potentially suitable although the design will be influenced by the ground conditions.
Licence number 100021290 EUL	Very significant constraints are indicated.
	There is a very significant potential for one or more hazards associated with infiltration.
Is ground instability likely to I	be a problem?
142000 141500	Increased infiltration is very unlikely to result in ground instability.
	Ground instability problems may be present or anticipated, but increased infiltration is unlikely to result in ground instability
	Ground instability problems are probably present. Increased infiltration may result in ground instability.
141000 599000 599 © Crown Copyright and/or database right 2017. All rights reserved. Licence number 100021290 EUL	There is a very significant potential for one or more geohazards associated with infiltration.
Is the groundwater susceptib	le to deterioration in quality?
142000	The groundwater is not expected to be especially vulnerable to contamination.
141500	The groundwater may be vulnerable to contamination.
	The groundwater is likely to be vulnerable to contaminants.
141000599000599© Crown Copyright and/or databaseright 2017. All rights reserved.Licence number 100021290 EUL	Made ground is present at the surface. Infiltration may increase the possibility of remobilising pollutants.

PART 2: DETAILED DATA

This section provides further information about the properties of the ground and will

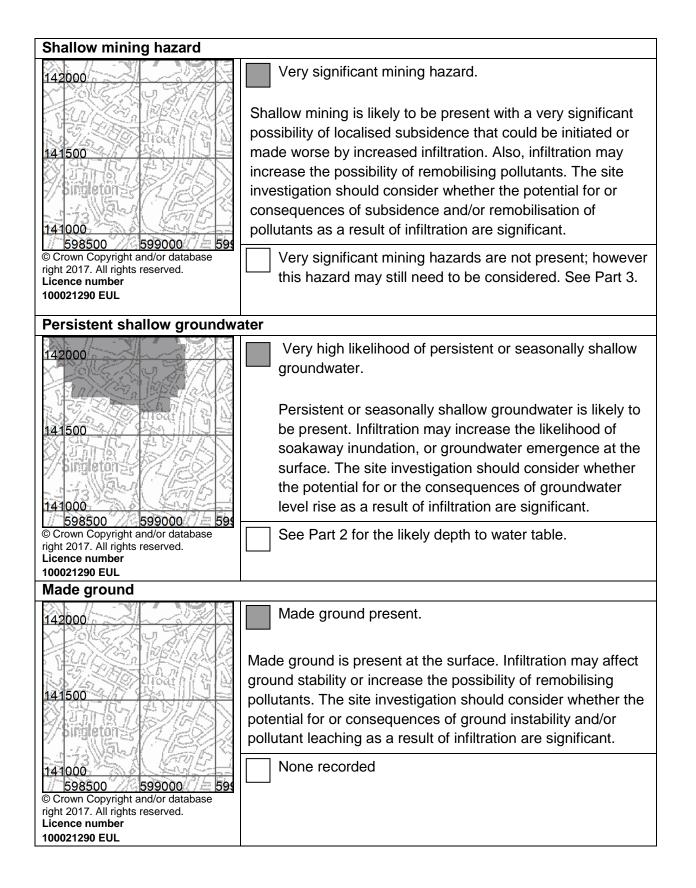
help assess the suitability of the ground for infiltration SuDS.

Section 1. Very significant constraints

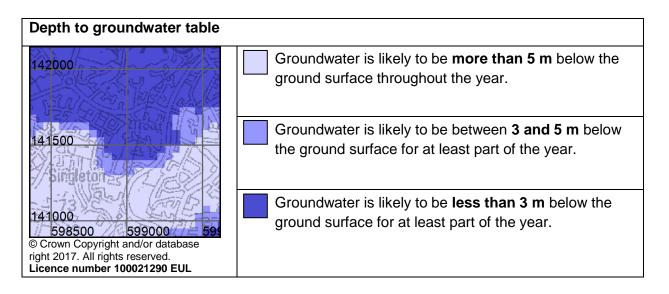

Where maps are overlain by grey polygons, geological or hydrogeological hazards

may exist that could be made worse by infiltration. The following hazards are

considered:

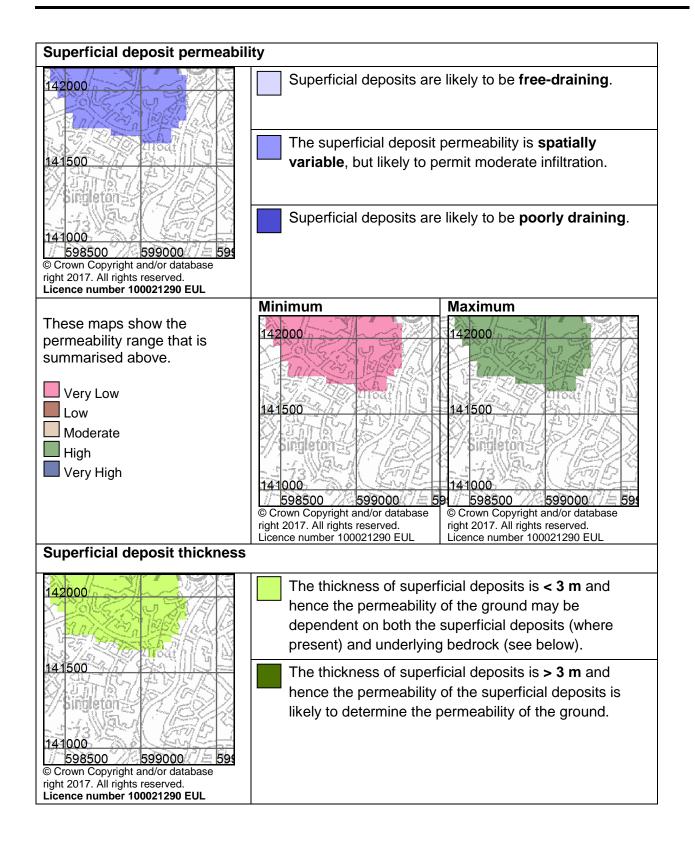

- soluble rocks
- landslides
- shallow mining
- shallow groundwater
- made ground

For more information read 'Explanation of terms' at the end of this report.

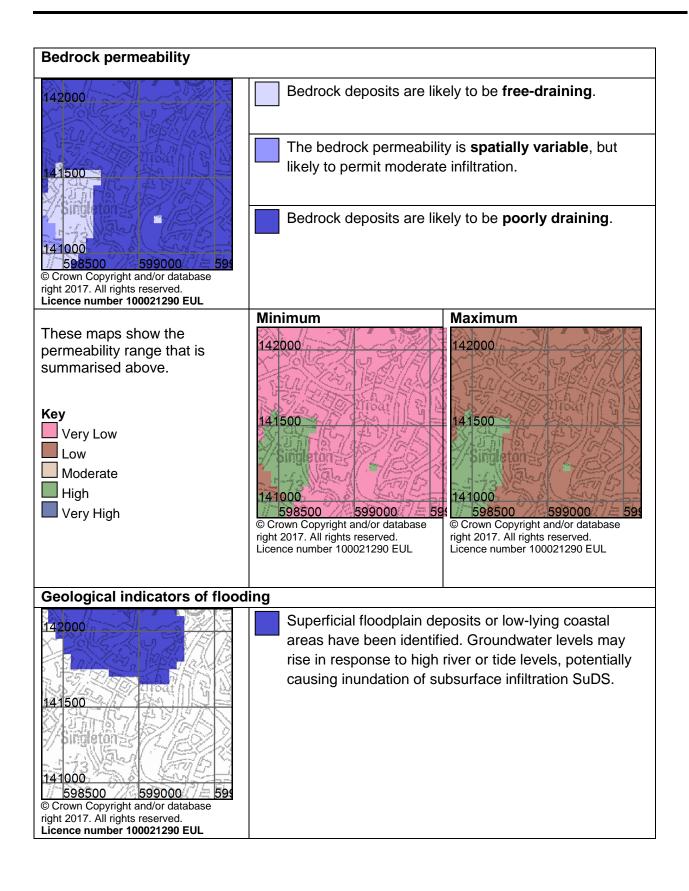

Section 2. Drainage potential

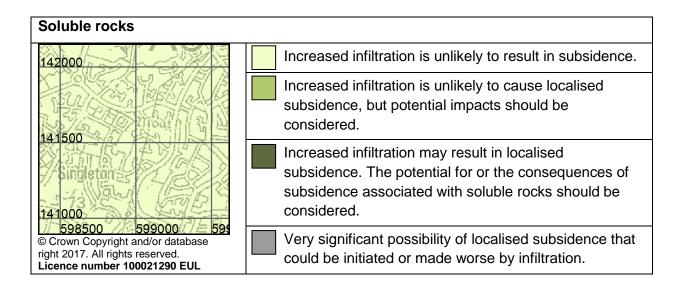
The following pages contain maps that will help you assess the drainage potential of the ground by considering the:

- depth to water table
- permeability of the superficial deposits
- thickness of the superficial deposits
- permeability of the bedrock
- presence of floodplains


Superficial deposits are not present everywhere and therefore some areas of the *superficial deposit permeability* map may not be coloured. Where this is the case, the *bedrock permeability* map shows the likely permeability of the ground. Superficial deposits in some places are very thin and hence in these places you may wish to consider both the permeability of the superficial deposits and the permeability of the bedrock. The *superficial thickness* map will tell you whether the superficial deposits are thin (< 3 m thick) or thick (>3 m). Where they are over 3 m thick, the permeability of the bedrock may not be relevant.

For more information read 'Explanation of terms' at the end of this report.





Section 3. Ground stability

The following pages contain maps that will help you assess whether infiltration may impact the stability of the ground. They consider hazards associated with:

- soluble rocks
- landslides
- shallow mining
- running sands
- swelling clays
- compressible ground, and
- collapsible ground

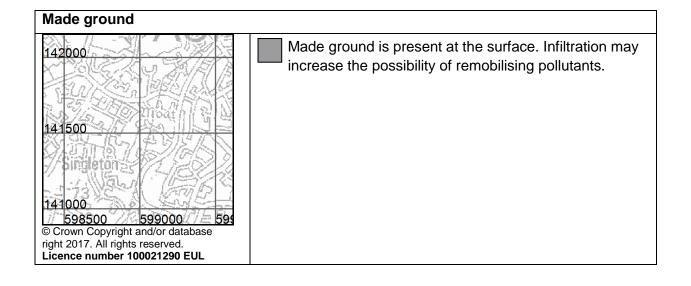
In the following maps, geohazards that are identified in green are unlikely to prevent infiltration SuDS from being installed, but they should be considered during design. For more information read 'Explanation of terms' at the end of this report.

Landslides	
142000	Increased infiltration is unlikely to lead to slope instability.
141500	Slope instability problems may be present or anticipated, but increased infiltration is unlikely to cause instability
Singleton 141000	Slope instability problems are probably present or have occurred in the past, and increased infiltration may result in slope instability.
© Crown Copyright and/or database right 2017. All rights reserved. Licence number 100021290 EUL	Slope instability problems are almost certainly present and may be active. An increase in moisture content as a result of infiltration may cause the slope to fail.
Shallow mining	
142000	Increased infiltration is unlikely to lead to subsidence.
141500	Shallow mining is possibly present. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
	Shallow mining could be present with a significant possibility that localised subsidence could be initiated or made worse by increased infiltration.
141000598500599000© Crown Copyright and/or databaseright 2017. All rights reserved.Licence number 100021290 EUL	Shallow mining is likely to be present, with a very significant possibility that localised subsidence may be initiated or made worse by increased infiltration.
Running sand	
142000	Increased infiltration is unlikely to cause ground collapse associated with running sands.
141500	Running sand is possibly present. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
© Crown Copyright and/or database right 2017. All rights reserved. Licence number 100021290 EUL	Significant possibility for running sand problems. Increased infiltration may result in a geohazard.

Swelling clays	
142000	Increased infiltration is unlikely to cause shrink-swell ground movement.
141500	Ground is susceptible to shrink-swell ground movement. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
© Crown Copyright and/or database right 2017. All rights reserved. Licence number 100021290 EUL	Ground is susceptible to shrink-swell ground movement. Increased infiltration may result in a geohazard.
Compressible ground	
142000	Increased infiltration is unlikely to lead to ground compression.
141500 141000 598500 599000 599 © Crown Copyright and/or database right 2017. All rights reserved. Licence number 100021290 EUL	Compressibility and uneven settlement hazards are probably present. Increased infiltration may result in a geohazard.
Collapsible ground	
142000	Increased infiltration is unlikely to result in subsidence.
141500	Deposits with potential to collapse when loaded and saturated are possibly present in places. Increased infiltration is unlikely to cause a geohazard, but potential impacts should be considered.
141000 598500 © Crown Copyright and/or database right 2017. All rights reserved.	Deposits with potential to collapse when loaded and saturated are probably present in places. Increased infiltration may result in a geohazard.
Licence number 100021290 EUL	

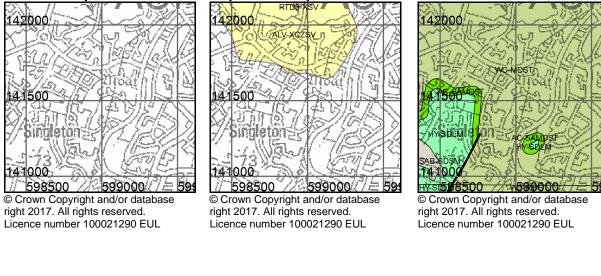
Section 4. Groundwater quality protection

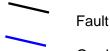
The following pages contain maps showing some of the information required to ensure the protection of groundwater quality. Data presented includes:


- groundwater source protection zones (Environment Agency data)
- predominant flow mechanism
- made ground

For more information read 'Explanation of terms' at the end of this report.

Groundwater source protection zones							
142000	Groundwater is not within a source protection zone.						
	Source protection zone IV						
141500	Source protection zone III						
Singleton	Source protection zone II						
141000 598500 © Crown Copyright and/or database right 2017. All rights reserved. Licence number 100021290 EUL	Source protection zone I.						
Derived in part from Source Protection Zone data provided under licence from the Environment Agency © Environment Agency 2017.							
Predominant flow mechanism							
142000 141500	Water is likely to percolate through the unsaturated zone to the groundwater through either the pore space in granular media or through porespace and fractures; these processes have some potential for contaminant removal and breakdown.						
© Crown Copyright and/or database right 2017. All rights reserved. Licence number 100021290 EUL	Water is likely to percolate through the unsaturated zone to the groundwater through fractures, a process which has little potential for contaminant removal and breakdown.						


Bedrock


Section 5. Geological Maps

The following maps show the artificial, superficial and bedrock geology within the area of interest.

Superficial deposits

Artificial deposits

Coal, ironstone or mineral vein

Note: Faults and Coals, ironstone & mineral veins are shown for illustration and to aid interpretation of the map. Not all such features are shown and their absence on the map face does not necessarily mean that none are present

Key to Artificial deposits: *No deposits recorded by BGS in the search area*

Key to Superficial deposits:

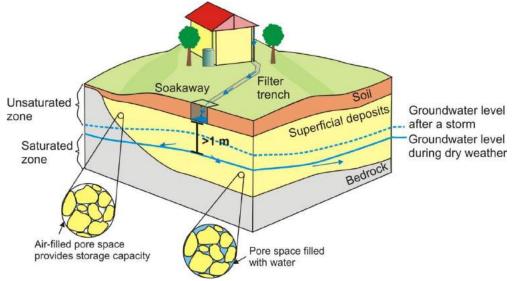
Map colour	Computer Code	Rock name	Rock type
	ALV-XCZSV	ALLUVIUM	CLAY, SILT, SAND AND GRAVEL
	RTD3-XSV	RIVER TERRACE DEPOSITS, 3	SAND AND GRAVEL

Key to Bedrock geology:

Map colour	Computer Code	Rock name	Rock type
	AC-SAMDST	ATHERFIELD CLAY FORMATION	MUDSTONE, SANDY
	HY-SDLM	HYTHE FORMATION	SANDSTONE AND [SUBEQUAL/SUBORDINATE] LIMESTONE, INTERBEDDED
	SAB-SDSM	SANDGATE FORMATION	SANDSTONE, SILTSTONE AND MUDSTONE
	WC-MDST	WEALD CLAY FORMATION	MUDSTONE

Limitations of this report:

- This report is concerned with the potential for infiltration-to-the-ground to be used as a SuDS technique at the site described. It only considers the subsurface beneath the search area and does NOT consider potential surface or subsurface impacts outside of that area.
- This report is NOT an alternative for an on-site investigation or soakaway test, which might reach a different conclusion.
- This report must NOT be used to justify disposal of foul waste or grey water.
- This report is based on and limited to an interpretation of the records held by the British Geological Survey (BGS) at the time the search is performed. The datasets used (with the exception of that showing depth to water table) are based on 1:50 000 digital geological maps and not site-specific data.
- Other more specific and detailed ground instability information for the site may be held by BGS, and an assessment of this could result in a modified assessment.
- To interpret the maps correctly, the report must be viewed and printed in colour.
- The search does NOT consider the suitability of sites with regard to:
 - o previous land use,
 - o potential for, or presence of contaminated land
 - presence of perched water tables
 - shallow mining hazards relating to coal mining. Searches of coal mining should be carried out via The Coal Authority Mine Reports Service: <u>www.coalminingreports.co.uk</u>.
 - made ground, where not recorded
 - proximity to landfill sites (searches for landfill sites or contaminated land should be carried out through consultation with local authorities/Environment Agency)
 - zones around private water supply boreholes that are susceptible to groundwater contamination.
- This report is supplied in accordance with the GeoReports Terms & Conditions available separately, and the copyright restrictions described at the end of this report



Explanation of terms

Depth to groundwater

In the shallow subsurface, the ground is commonly unsaturated with respect to water. Air fills the spaces within the soil and the underlying superficial deposits and bedrock. At some depth below the ground surface, there is a level below which these spaces are full of water. This level is known as the groundwater level, and the water below it is termed the groundwater. When water is infiltrated, the groundwater level may rise temporarily. To ensure that there is space in the unsaturated zone to accommodate this, there should be a minimum thickness of 1 m between the <u>base</u> of the infiltration system and the <u>water table</u>. An estimate of the *depth to groundwater* is therefore useful in determining whether the ground is suitable for infiltration.

Groundwater flooding

Groundwater flooding occurs when a rise in groundwater level results in very shallow groundwater or the emergence of groundwater at the surface. If infiltration systems are installed in areas that are susceptible to groundwater flooding, it is possible that the system could become inundated. The susceptibility map seeks to identify areas where the geological conditions and water tables indicate that groundwater level rise could occur under certain circumstances. A high susceptibility to groundwater flooding has ever occurred in the past, or will do so in the future as the susceptibility maps do not contain information on how often flooding may occur. The susceptibility maps are designed for planning; identifying areas where groundwater flooding might be an issue that needs to be taken into account.

Geological indicators of flooding

In floodplain deposits, groundwater level can be influenced by the water level in the adjacent river. Groundwater level may increase during periods of fluvial flood and therefore this should be taken into account when designing infiltration systems on such deposits. The *geological indicators of flooding* dataset shows where there is geological evidence (floodplain deposits) that flooding has occurred in the past.

For further information on flood-risk, the likely frequency of its recurrence in relation to any proposed development of the site, and the status of any flood prevention measures in place, you are advised to contact the local office of the Environment Agency (England and Wales) at <u>www.environment-agency.gov.uk/</u> or the Scottish Environment Protection Agency (Scotland) at <u>www.sepa.org.uk</u>.

Artificial ground

Artificial ground comprises deposits and excavations that have been created or modified by human activity. It includes ground that is worked (quarries and road cuttings), infilled (back-filled quarries), landscaped (surface re-shaping), disturbed (near surface mineral workings) or classified as made ground (embankments and spoil heaps). The composition and properties of artificial ground are often unknown. In particular, the permeability and chemical composition of the artificial ground should be determined to ensure that the ground will drain and that any contaminants present will not be remobilised.

Superficial permeability

Superficial deposits are those geological deposits that were formed during the most recent period of geological time (as old as 2.6 million years before present). They generally comprise relatively thin deposits of gravel, sand, silt and clay and are present beneath the pedological soil in patches or larger spreads over much of Britain. The ease with which water can percolate through these deposits is controlled by their permeability and varies widely depending on their composition. Those deposits comprising clays and silts are less permeable and thus infiltration is likely to be slow, such that water may pool on the surface. In comparison, deposits comprising sands and gravels are more permeable allowing water to percolate freely.

Bedrock permeability

Bedrock forms the main mass of rock forming the Earth. It is present everywhere, commonly beneath superficial deposits. Where the superficial deposits are thin or absent, the ease with which water will percolate into the ground depends on the permeability of the bedrock.

Natural ground instability

Natural ground instability refers to the propensity for upward, lateral or downward movement of the ground that can be caused by a number of natural geological hazards (e.g. ground dissolution/compressible ground). Some movements associated with particular hazards may be gradual and of millimetre or centimetre scale, whilst others may be sudden and of metre or tens of metres scale. Significant natural ground instability has the potential to cause damage to buildings and structures, especially when the drainage characteristics of a site are altered. It should be noted, however, that many buildings, particularly more modern ones, are built to such a standard that they can remain unaffected in areas of significant ground movement.

Shrink-swell

A shrinking and swelling clay changes volume significantly according to how much water it contains. All clay deposits change volume as their water content varies, typically swelling in winter and shrinking in summer, but some do so to a greater extent than others. Contributory circumstances could include drought, leaking service pipes, tree roots drying-out the ground or changes to local drainage patterns, such as the creation of soakaways. Shrinkage may remove support from the foundations of buildings and structures, whereas clay expansion may lead to uplift (heave) or lateral stress on part or all of a structure; any such movements may cause cracking and distortion.

Landslides (slope stability)

A landslide is a relatively rapid outward and downward movement of a mass of ground on a slope, due to the force of gravity. A slope is under stress from gravity but will not move if its strength is greater than this stress. If the balance is altered so that the stress exceeds the strength, then movement will occur. The stability of a slope can be reduced by removing ground at the base of the slope, by placing material on the slope, especially at the top, or by increasing the water content of the materials forming the slope. Increase in subsurface water content beneath a soakaway could increase susceptibility to landslide hazards. The assessment of landslide hazard refers to the stability of the present land surface. It does not encompass a consideration of the stability of excavations.

Soluble rocks (dissolution)

Some rocks are soluble in water and can be progressively removed by the flow of water through the ground. This process tends to create cavities, potentially leading to the collapse of overlying materials and possibly subsidence at the surface. The release of water into the subsurface from infiltration systems may increase the dissolution of rock or destabilise material above or within a cavity. Dissolution cavities may create a pathway for rapid transport of contaminated water to an aquifer or water course.

Compressible ground

Many ground materials contain water-filled pores (the spaces between solid particles). Ground is compressible if a building (or other load) can cause the water in the pore space to be squeezed out, causing the ground to decrease in thickness. If ground is extremely compressible the building may sink. If the ground is not uniformly compressible, different parts of the building may sink by different amounts, possibly causing tilting, cracking or distortion. The compressibility of the ground may alter as a result of changes in subsurface water content caused by the release of water from soakaways.

Collapsible deposits

Collapsible ground comprises certain fine-grained materials with large pore spaces (the spaces between solid particles). It can collapse when it becomes saturated by water and/or a building (or other structure) places too great a load on it. If the material below a building collapses it may cause the building to sink. If the collapsible ground is variable in thickness or distribution, different parts of the building may sink by different amounts, possibly causing tilting, cracking or distortion. The subsurface underlying a soakaway will experience an increase in water content that may affect the stability of the ground. This hazard is most likely to be encountered only in parts of southern England.

Running sand

Running sand conditions occur when loosely-packed sand, saturated with water, flows into an excavation, borehole or other type of void. The pressure of the water filling the spaces between the sand grains reduces the contact between the grains and they are carried along by the flow. This can lead to subsidence of the surrounding ground. Running sand is potentially hazardous during the drainage system installation. During installation, excavation of the ground may create a space into which sand can flow, potentially causing subsidence of surrounding ground.

Shallow mining hazards (non coal)

Current or past underground mining for coal or for other commodities can give rise to cavities at shallow or intermediate depths, which may cause fracturing, general settlement, or the formation of crown-holes in the ground above. Spoil from mineral workings may also present a pollution hazard. The release of water into the subsurface from soakaways may destabilise material above or within a cavity. Cavities arising as a consequence of mining may also create a pathway for rapid transport of contaminated water to an aquifer or watercourse. The mining hazards map is derived from the geological map and considers the potential for subsidence associated with mining on the basis of geology type. Therefore if mining is known to occur within a certain rock, the map will highlight the potential for a hazard within the area covered by that geology.

For more information regarding underground and opencast **coal mining**, the location of mine entries (shafts and adits) and matters relating to subsidence or other ground movement induced by **coal mining** please contact the Coal Authority, Mining Reports, 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG; telephone 0845 762 6848 or at <u>www.coal.gov.uk</u>. For more information regarding other types of mining (i.e. non-coal), please contact the British Geological Survey.

Groundwater source protection zones

In England and Wales, the Environment Agency has defined areas around wells, boreholes and springs that are used for the abstraction of public drinking water as source protection zones. In conjunction with Groundwater Protection Policy the zones are used to restrict activities that may impact groundwater quality, thereby preventing pollution of underlying aquifers, such that drinking water quality is upheld. The Environment Agency can provide advice on the location and implications of source protection zones in your area (www.environment-agency.gov.uk/)

Contact Details

Keyworth Office

British Geological Survey Environmental Science Centre Nicker Hill Keyworth Nottingham NG12 5GG Tel: 0115 9363143 Fax: 0115 9363276 Email: enquiries@bgs.ac.uk

Wallingford Office

British Geological Survey Maclean Building Wallingford Oxford OX10 8BB Tel: 01491 838800 Fax: 01491 692345 Email: hydroenq@bgs.ac.uk

Edinburgh Office

British Geological Survey Lyell Centre Research Avenue South Edinburgh EH14 4AP Tel: 0131 6671000 Email: enquiry@bgs.ac.uk

Terms and Conditions

General Terms & Conditions

This Report is supplied in accordance with the GeoReports Terms & Conditions available on the BGS website at <u>https://shop.bgs.ac.uk/georeports</u> and also available from the BGS Central Enquiries Desk at the above address.

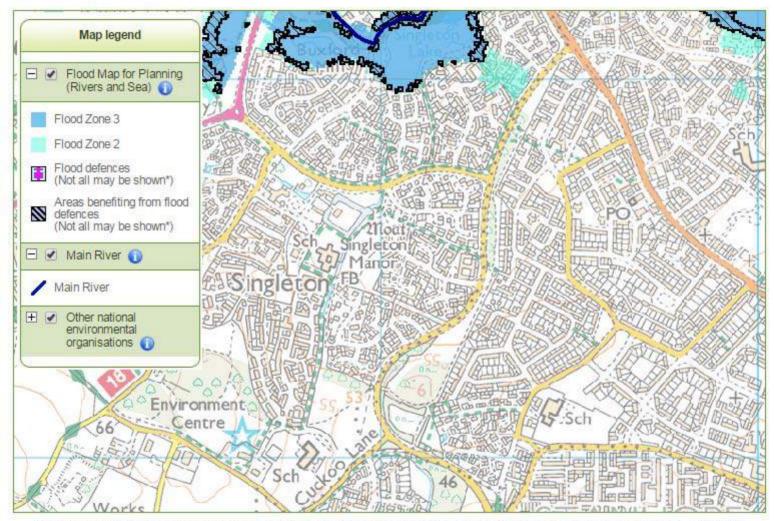
Important notes about this Report

- The data, information and related records supplied in this Report by BGS can only be indicative and should not be taken as a substitute for specialist interpretations, professional advice and/or detailed site investigations. You must seek professional advice before making technical interpretations on the basis of the materials provided.
- Geological observations and interpretations are made according to the prevailing understanding of the subject at the time. The quality of such observations and interpretations may be affected by the availability of new data, by subsequent advances in knowledge, improved methods of interpretation, and better access to sampling locations.
- Raw data may have been transcribed from analogue to digital format, or may have been acquired by means of
 automated measuring techniques. Although such processes are subjected to quality control to ensure reliability
 where possible, some raw data may have been processed without human intervention and may in consequence
 contain undetected errors.
- Detail, which is clearly defined and accurately depicted on large-scale maps, may be lost when small-scale maps are derived from them.
- Although samples and records are maintained with all reasonable care, there may be some deterioration in the long term.
- The most appropriate techniques for copying original records are used, but there may be some loss of detail and dimensional distortion when such records are copied.
- Data may be compiled from the disparate sources of information at BGS's disposal, including material donated to BGS by third parties, and may not originally have been subject to any verification or other quality control process.
- Data, information and related records, which have been donated to BGS, have been produced for a specific
 purpose, and that may affect the type and completeness of the data recorded and any interpretation. The
 nature and purpose of data collection, and the age of the resultant material may render it unsuitable for certain
 applications/uses. You must verify the suitability of the material for your intended usage.
- If a report or other output is produced for you on the basis of data you have provided to BGS, or your own data
 input into a BGS system, please do not rely on it as a source of information about other areas or geological
 features, as the report may omit important details.
- The topography shown on any map extracts is based on the latest OS mapping and is not necessarily the same as that used in the original compilation of the BGS geological map, and to which the geological linework available at that time was fitted.
- Note that for some sites, the latest available records may be quite historical in nature, and while every effort is
 made to place the analysis in a modern geological context, it is possible in some cases that the detailed geology
 at a site may differ from that described.

Copyright:

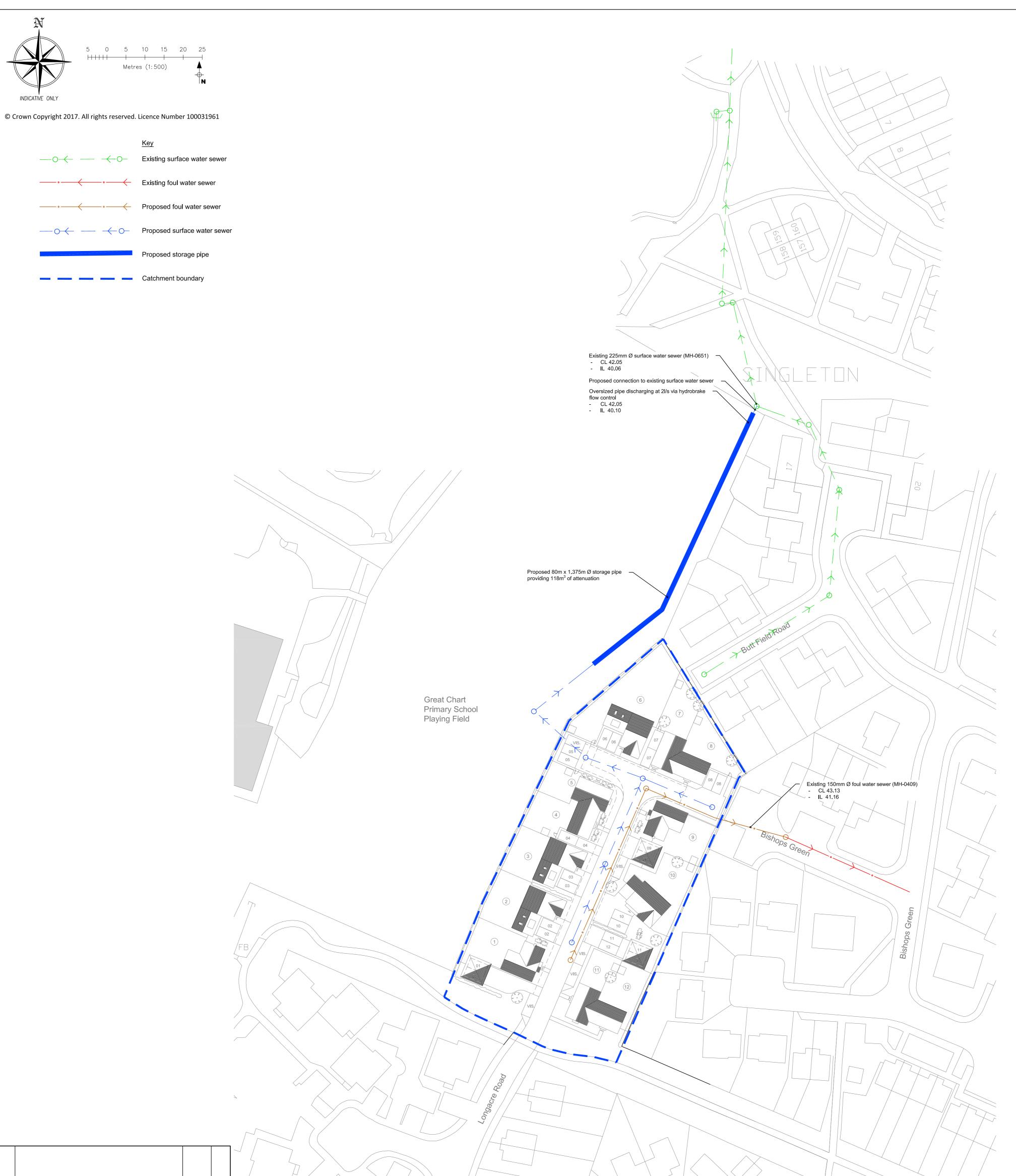
Copyright in materials derived from the British Geological Survey's work, is owned by the Natural Environment Research Council (NERC) and/ or the authority that commissioned the work. You may not copy or adapt this publication, or provide it to a third party, without first obtaining NERC's permission, but if you are a consultant purchasing this report solely for the purpose of providing advice to your own individual client you may incorporate it unaltered into your report to that client without further permission, provided you give a full acknowledgement of the source. Please contact the BGS Copyright Manager, British Geological Survey, Environmental Science Centre, Nicker Hill, Keyworth, Nottingham NG12 5GG. Telephone: 0115 936 3100.

This meduat includes menuing data licensed for


This product includes mapping data licensed from the Ordnance Survey® with the permission of the Controller of Her Majesty's Stationery Office. © Crown Copyright 2017. All rights reserved. Licence number 100021290 EUL

Report issued by BGS Enquiry Service

APPENDIX 6.0 – ENVIRONMENT AGENCY FLOOD RISK MAP


TN23 5EF at scale 1:10,000

© Environment Agency copyright and database rights 2017. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100024198. Contains Royal Mail data © Royal Mail copyright and database right 2017.

This service is designed to inform members of the public, in line with our terms and conditions. For business or commercial use, please contact us.

APPENDIX 7.0 – PROPOSED DRAINAGE STRATEGY AND CALCULATIONS

								2	/
	First issue				.17 CS	1			
REV	AMENDMENTS			DAT	E CHK	\land			
Client							\searrow (
KEN	NT COUNT	Y COUN	CIL						/ /
Projec	ot								
			GREAT CH	ART					
PRI	MARY SC	HOOL							
Title									
PRC	JPOSED L	DRAINAG	E SRATEG	iΥ					
	Г								
Drwg		Rev	Scale	Date					
1226	58-D02	P1	1:500	26.04.	17				
	lha) tr integra	ated transport	Ltravel pla	nning				
	se House, Eclipse stone, Kent. ME1		ourne Road						
t: 016	622 776226		f: 01622 776227	7					
e info	o@dhaplanning.c	co.uk	w: www.dhatran	nsport.co.uk					
0. 1110									
	Reference: CA	D REF			A1				

	Ltd								Page 1
Eclipse House	Eclip	ose	Park	Land	d adjao	cent to	o Grea	t Chart	
Sittingbourne F	Road			Prop	Proposed storage pipe				
Maidstone ME14	4 3EN								- Cu
Date 03/05/2017	7 12:15	5		Desi	laned b	by Sper	ncer		
File storage pi					cked by				Drainago
	ipe.sie					-	2015 1		
Causeway				Soui	rce tor	ntrol 2	2015.1		
Cum		f D	o o u 1 + o	for 1	0.0	Dotu			- 1
Suit	mary c	<u>di r</u>	esults	IOT I	<u>JU yea</u>	<u>r ketu</u>	rn Per	iod (+409	5)
		Stor	rm	Max	Max	Max	Max	Status	
		Ever	nt	Level	Depth (Control	Volume		
				(m)	(m)	(1/s)	(m³)		
			~		0		0		
				40.860		1.6			
				41.002 41.141			72.4 88.4		
				41.269		1.0			
				41.325		1.9			
				41.346		1.9			
				41.344		1.9	109.3		
	480	min	Summer	41.317	1.217	1.9	106.7	O K	
				41.288		1.9	103.9		
				41.261		1.8	101.2		
				41.217		1.8	96.6		
				41.146			88.9		
				41.053 40.969		1.7	78.3 68.6		
				40.909		1.0			
				40.681		1.6	35.5		
				40.518		1.6			
	8640	min	Summer	40.409	0.309	1.6	9.7	ОК	
	10080	min	Summer	40.325	0.225	1.6	4.6	O K	
	15	min	Winter	40.919	0.819	1.6	62.8	O K	
	30	min	Winter	41.081	0.981	1.7	81.5	ОК	
		~ .		_ ·					
		Stor	m	Rain	Floode	a Disch	arge Ti	me-Peak	
								1	
		Even			Volume (m³)			(mins)	
		Even	t	(mm/hr)	(m³)	e Volu (m ³	3)		
	15	Even min	t Summer	(mm/hr)	(m³) 0.	volu (m ³	') 57.5	19	
	15 30	Even min min	t Summer Summer	(mm/hr) 138.153 90.705	(m³) 0. 0.	volu (m ³ 0	3) 57.5 75.5	19 34	
	15 30 60	Even min min min	t Summer Summer Summer	(mm/hr) 138.153 90.705 56.713	(m³) 0. 0. 0.	Volu (m ³ 0 0	3) 57.5 75.5 94.4	19 34 64	
	15 30 60 120	Even min min min min	t Summer Summer Summer	(mm/hr) 138.153 90.705	(m³) 0. 0. 0. 0.	volu (m ³) 0 0 0 0 1	3) 57.5 75.5	19 34	
	15 30 60 120 180	Even min min min min min	t Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246	(m³) 0. 0. 0. 0.	 Volu (m³) 0 0 0 1 0 1 	3) 57.5 75.5 94.4 14.0	19 34 64 122	
	15 30 60 120 180 240	Even min min min min min min	t Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149	(m ³) 0. 0. 0. 0. 0.	 Volu (m³) 0 0 1 0 1 	57.5 75.5 94.4 14.0 25.6	19 34 64 122 182	
	15 30 60 120 180 240 360	min min min min min min min	t Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078	(m³) 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	3) 57.5 75.5 94.4 14.0 25.6 33.7	19 34 64 122 182 242	
	15 30 60 120 180 240 360 480 600	Even min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1	19 34 64 122 182 242 360 450 506	
	15 30 60 120 180 240 360 480 600 720	Even min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3	19 34 64 122 182 242 360 450 506 570	
	15 30 60 120 180 240 360 480 600 720 960	Even min min min min min min min min min mi	t Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4	19 34 64 122 182 242 360 450 506 570 694	
	15 30 60 120 180 240 360 480 600 720 960 1440	Even min min min min min min min min min mi	t Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4	19 34 64 122 182 242 360 450 506 570 694 968	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2	19 34 64 122 182 242 360 450 506 570 694 968 1384	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490 2.766	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2 21.0	19 34 64 122 182 242 360 450 506 570 694 968 1384 1788	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2	19 34 64 122 182 242 360 450 506 570 694 968 1384	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490 2.766 1.989	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2 21.0 38.5	19 34 64 122 182 242 360 450 506 570 694 968 1384 1788 2592	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Even min min min min min min min min min mi	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490 2.766 1.989 1.573	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2 21.0 38.5 51.5	19 34 64 122 182 242 360 450 506 570 694 968 1384 1788 2592 3400	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	Even min min min min min min min min min mi	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490 2.766 1.989 1.573 1.311 1.129 0.994	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³) 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2 21.0 38.5 51.5 61.9	19 34 64 122 182 242 360 450 506 570 694 968 1384 1788 2592 3400 3968	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Even min min min min min min min min min mi	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	<pre>(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490 2.766 1.989 1.573 1.311 1.129 0.994 138.153</pre>	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2 21.0 38.5 51.5 61.9 70.6 78.1 64.4	19 34 64 122 182 242 360 450 506 570 694 968 1384 1788 2592 3400 3968 4584 5240 19	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	Even min min min min min min min min min mi	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 138.153 90.705 56.713 34.246 25.149 20.078 14.585 11.622 9.738 8.424 6.697 4.839 3.490 2.766 1.989 1.573 1.311 1.129 0.994	(m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Volu (m ³)	57.5 75.5 94.4 14.0 25.6 33.7 45.7 54.8 62.1 68.3 78.4 93.4 09.2 21.0 38.5 51.5 61.9 70.6 78.1	19 34 64 122 182 242 360 450 506 570 694 968 1384 1788 2592 3400 3968 4584 5240	

clipse House Ec	lipse Park	Land	d adjac	ent to	Grea	t Chart	
ittingbourne Road	-		Proposed storage pipe				
aidstone ME14 3E			jobca c	corage	pipe		
		Dee	' l - la				
ate 03/05/2017 12			-	y Spen	cer		
ile storage pipe.	srcx		cked by				
auseway		Sou	rce Cor	trol 2	015.1		
Summar	<u>y of Results</u>	for 1	00 year	<u>Retur</u>	n Per	iod (+40	
	Storm	Max	Max	Max	Max	Status	
	Event	Level (m)	(m)	Control ' (1/s)	(m ³)		
		(111)	(111)	(1/5)	(111)		
	60 min Winter	41.247	1.147	1.8	99.8	ΟK	
	120 min Winter	41.419	1.319		115.7		
	180 min Winter				122.6		
	240 min Winter				125.6		
	360 min Winter				126.9		
	480 min Winter				125.5		
	600 min Winter				122.5		
	720 min Winter 960 min Winter				119.1 113.2		
1	440 min Winter				102.5		
	160 min Winter				87.0		
	880 min Winter				72.6		
	320 min Winter			1.6			
	760 min Winter			1.6	18.1		
	200 min Winter			1.6	4.4	ОК	
8	640 min Winter	40.223	0.123	1.5	1.1	ОК	
10	080 min Winter	40.184	0.084	1.3	0.5	O K	
	Storm	Rain		d Discha	-		
	Event	(mm/hr)	Volume			(mins)	
			(m³)	(m³)		
	60 min Winter	56.713	0.0) 10)5.8	62	
	120 min Winter				27.7	120	
	180 min Winter	25.149			10.7	178	
:	240 min Winter	20.078	0.0) 14	19.8	236	
:	360 min Winter	14.585	0.0) 16	53.2	348	
	480 min Winter	11.622	0.0) 17	/3.4	458	
	600 min Winter				31.6	560	
	720 min Winter				38.5	592	
	960 min Winter				9.8	740	
	440 min Winter	4.839			.6.6	1052	
	160 min Winter				34.3	1496	
	380 min Winter	2.766			17.6	1932 2769	
2			U. 1	J 26	57.1	2768	
2	320 min Winter	1.989		n na			
2: 4: 5	320 min Winter 760 min Winter	1.573	0.0		31.6 33 3	3400 3888	
2 4 5 7	320 min Winter 760 min Winter 200 min Winter	1.573 1.311	0.0	29	93.3	3888	
2: 4: 5: 7: 8	320 min Winter 760 min Winter	1.573 1.311 1.129	0.0) 29) 30			

DHA Transport Ltd		Page 3
Eclipse House Eclipse Park	Land adjacent to Great Chart	
Sittingbourne Road	Proposed storage pipe	L
Maidstone ME14 3EN		Micco
Date 03/05/2017 12:15	Designed by Spencer	Desipado
File storage pipe.srcx	Checked by	Diamaye
Causeway	Source Control 2015.1	1

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.222

Time	(mins)	Area
From:	To:	(ha)

0 4 0.222

					Pa	age 4
Eclipse House Ec	lipse Park	Land ac	ljacent to	Great Ch		
Sittingbourne Road		Propose	d storage	pipe	2	1
Maidstone ME14 3E	N					Airco
Date 03/05/2017 12	:15	Designe	d by Spend	cer	N	
File storage pipe.	srcx	Checked	l by		L	Irainage
Causeway		Source	Control 20)15.1		
		<u>Model De</u>	tails_			
	Storage is		er Level (m)	42.000		
		<u>Pipe Stru</u>	<u>icture</u>			
	Diameter (m)	1.375	Length (m	n) 85.000		
	Slope (1:X)	300.000 Inv	vert Level (m	n) 40.100		
	<u>Hydro-Brake</u>	e Optimum@	0utflow (<u>Control</u>		
		it Referenc ign Head (m	e MD-SHE-006	62-2000-13	75-2000 1.375	
	Desig	n Flow (l/s			2.0	
		Flush-Flc Objectiv	e Minimise		culated	
	D	iameter (mm		apo or oann i	62	
		rt Level (m			40.100	
	m Outlet Pipe D: ested Manhole D:				75 1200	
	Control 1		Head (m) F	'low (1/s)	1200	
	Design Point ((Calculated)		2.0		
			™ 0.272			
		Kick-Flo	0.553	1.3		
	Mean Flow over	Head Range	-	1.6		
The hydrological ca Hydro-Brake Optimum Hydro-Brake Optimum invalidated	lculations have ® as specified.	been based Should an	l on the Head other type o	d/Discharge of control	device othe	er than a
Hydro-Brake Optimum Hydro-Brake Optimum	lculations have ® as specified. ® be utilised t	been based Should an hen these s	l on the Head other type o torage routi	d/Discharge of control ing calcula	device othe ations will	er than a be
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/1 0.100 1	lculations have () as specified. () be utilised the s) Depth (m) Fl .4 1.200	been based Should ar hen these s .ow (1/s) D 1.9	l on the Head other type o torage routi epth (m) Flo 3.000	d/Discharge of control ing calcula ww (1/s) De 2.9	device othe ations will epth (m) Flo 7.000	er than a be (1/s)
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/2 0.100 1 0.200 1	lculations have () as specified. () be utilised t () Depth (m) Fl .4 1.200 .6 1.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0	l on the Head other type o storage routi epth (m) Flo 3.000 3.500	d/Discharge of control ing calcula ww (l/s) De 2.9 3.1	device othe ations will epth (m) Flo 7.000 7.500	er than a be ow (1/s) 4.2 4.4
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1	lculations have () as specified. () be utilised the s) Depth (m) Fl .4 1.200	been based Should ar hen these s .ow (1/s) D 1.9	l on the Head other type o torage routi epth (m) Flo 3.000	d/Discharge of control ing calcula ww (1/s) De 2.9	device othe ations will epth (m) Flo 7.000	er than a be (1/s)
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.800 () 2.000	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000	A/Discharge of control ing calcula ww (l/s) De 2.9 3.1 3.3 3.4 3.6	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/ 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.800 () 2.200 () 2.200	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8	device othe ations will Ppth (m) Flo 7.000 7.500 8.000 8.500	er than a be ow (1/s) 4.2 4.4 4.5 4.6
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.800 () 2.000	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000	A/Discharge of control ing calcula ww (l/s) De 2.9 3.1 3.3 3.4 3.6	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Optimum Hydro-Brake Optimum invalidated Depth (m) Flow (1/3 0.100 1 0.200 1 0.300 1 0.400 1 0.500 1 0.600 1 0.800 1	lculations have () as specified. () be utilised till () bepth (m) Fl () 1.200 () 1.400 () 1.600 () 1.600 () 1.800 () 2.000 () 2.200 () 2.400	been based Should ar hen these s .ow (1/s) D 1.9 2.0 2.1 2.3 2.4 2.5 2.6	l on the Head other type of torage routi epth (m) Flo 3.000 3.500 4.000 4.500 5.000 5.500 6.000	A/Discharge of control ing calcula ww (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device othe ations will 7.000 7.500 8.000 8.500 9.000	er than a be ow (1/s) 4.2 4.4 4.5 4.6 4.8

DHA Transport L	td								Page 1
Eclipse House	Eclip	bse	Park	Land	d adja	cent to	o Grea	t Chart	
Sittingbourne R	load			Prop	posed	storage	e pipe		4
Maidstone ME14	3EN								MA
Date 03/05/2017	12:16	5		Des	igned	by Sper	ncer		MILLO
File storage pi					cked b				Drainad
	PC.010					ntrol 2	2015 1		
Causeway				5001		IILIOI 2	2013.1		
Gum	maryo	f P	+	for 1	00 100	r Potu	rn Dar	iod (+20	2)
<u>5 uni</u>	<u>mary</u> c		esurts	101 1	<u>00 yee</u>	II Netu.	III ICI	100 (120	<u>o)</u>
		Stor	m	Max	Max	Max	Max	Status	
		Even	it	Level	Depth	Control	Volume		
				(m)	(m)	(1/s)	(m³)		
	1 5		0	40 700	0 600	1 (17 7	0.17	
				40.789 40.910		1.6	47.7 61.7		
				40.910		1.0	75.0		
				41.121		1.7	86.1		
				41.157		1.8	90.1		
				41.167		1.8	91.2		
				41.156		1.8	90.0		
				41.130		1.7			
				41.106		1.7	84.4		
				41.086		1.7	82.1		
	960	min	Summer	41.050	0.950	1.7	78.0	ΟK	
	1440	min	Summer	40.988	0.888	1.6	70.8	ΟK	
	2160	min	Summer	40.902	0.802	1.6	60.7	ΟK	
	2880	min	Summer	40.822	0.722	1.6	51.4	ΟK	
				40.667		1.6	34.0	ΟK	
				40.499		1.6	17.2		
				40.386		1.6	8.1		
				40.298		1.6	3.4		
				40.239 40.841		1.5 1.6	1.5 53.6		
				40.977		1.0	69.5		
	i	Stor	m	Rain	Flood	ed Disch	arge Ti	me-Peak	
		Stor Even		Rain (mm/hr)	Volum	e Volu	me	.me-Peak (mins)	
						e Volu	me		
	:	Even	t		Volum (m³)	e Volu (m ³	me		
	15	Even min	t	(mm/hr)	Volum (m³)	e Volu (m ³	me 3)	(mins)	
	15 30 60	min min min	t Summer Summer Summer	(mm/hr) 118.417 77.747 48.611	Volum (m ³) 0 0	e Volu (m ³ .0 .0	49.3 64.7 80.9	(mins) 19 33 64	
	15 30 60 120	min min min min	t Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354	Volum (m ³) 0 0 0	e Volu (m ³ .0 .0 .0	49.3 64.7 80.9 97.7	(mins) 19 33 64 122	
	15 30 60 120 180	min min min min min min	t Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556	Volum (m ³) 0 0 0 0	e Volu (m ³ .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7	(mins) 19 33 64 122 182	
	15 30 60 120 180 240	min min min min min min min	t Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210	Volum (m ³) 0 0 0 0 0	e Volu (m ³ .0 .0 .0 .0 .0 .0 .0 1 .0	49.3 64.7 80.9 97.7 07.7 14.6	(mins) 19 33 64 122 182 242	
	15 30 60 120 180 240 360	min min min min min min min min	t Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501	Volum (m ³) 0 0 0 0 0 0 0 0	e Volu (m ³ .0 .0 .0 .0 .0 .0 .0 1 .0 1 .0 1	49.3 64.7 80.9 97.7 07.7 14.6 24.9	(mins) 19 33 64 122 182 242 360	
	15 30 60 120 180 240 360 480	min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³ .0 .0 .0 .0 .0 .0 .0 1 .0 1 .0 1 .0 1	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7	(mins) 19 33 64 122 182 242 360 426	
	15 30 60 120 180 240 360 480 600	min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³ .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0	(mins) 19 33 64 122 182 242 360 426 486	
	15 30 60 120 180 240 360 480 600 720	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221	Volum (m ³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .1 .0 .1 .0 .1	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3	(mins) 19 33 64 122 182 242 360 426 486 550	
	15 30 60 120 180 240 360 480 600 720 960	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9	(mins) 19 33 64 122 182 242 360 426 486 550 682	
	15 30 60 120 180 240 360 480 600 720 960 1440	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7	(mins) 19 33 64 122 182 242 360 426 486 550 682 954	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9	(mins) 19 33 64 122 182 242 360 426 486 550 682	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7 79.3	(mins) 19 33 64 122 182 242 360 426 486 550 682 954 1364	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7 79.3 89.5	(mins) 19 33 64 122 182 242 360 426 486 550 682 954 1364 1784	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7 79.3 89.5 04.4	(mins) 19 33 64 122 182 242 360 426 486 550 682 954 1364 1784 2592	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705 1.348	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7 79.3 89.5 04.4 15.5	(mins) 19 33 64 122 182 242 360 426 486 550 682 954 1364 1784 2592 3176	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705 1.348 1.123 0.967 0.852	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e Volu (m ³) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7 79.3 89.5 04.4 15.5 24.4	(mins) 19 33 64 122 182 242 360 426 486 550 682 954 1364 1784 2592 3176 3824	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705 1.348 1.123 0.967 0.852 118.417	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	volu (m ³) .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7 79.3 89.5 04.4 15.5 24.4 31.9 38.4 55.2	(mins) 19 33 64 122 182 242 360 426 486 550 682 954 1364 1784 2592 3176 3824 4488 5144 19	
	15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min min min min min min min min min min	t Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	(mm/hr) 118.417 77.747 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705 1.348 1.123 0.967 0.852	Volum (m³) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	volu (m ³) .0	49.3 64.7 80.9 97.7 07.7 14.6 24.9 32.7 39.0 44.3 52.9 65.7 79.3 89.5 04.4 15.5 24.4 31.9 38.4	(mins) 19 33 64 122 182 242 360 426 486 550 682 954 1364 1784 2592 3176 3824 4488 5144	

OHA Transport Ltd		-	1 - 1'		C i	
-	pse Park		-	cent to		t Chart
ittingbourne Road		Prop	posed	storage	e pipe	
Maidstone ME14 3EN						
ate 03/05/2017 12:1	6	Desi	_gned [by Spen	lcer	
File storage pipe.sr	СХ	Cheo	cked b	У		
Causeway		Soui	ce Co	ntrol 2	015.1	
<u>Summary</u>	of Results	for 1	<u>)0 yea</u>	r Retur	n Per	iod (+2
	Storm	Max	Max	Max	Max	Status
	Event			Control		blacab
		(m)	(m)	(1/s)	(m ³)	
) min Winter			1.7	84.9	
) min Winter			1.8	97.9	
) min Winter			1.9	103.2	
) min Winter			1.9	105.2	
) min Winter			1.9	105.4	
) min Winter			1.9	103.2	
) min Winter			1.8	99.8	
) min Winter			1.8	96.7	
) min Winter			1.8	91.2	
) min Winter			1.7	80.9	
) min Winter			1.6	65.9	
) min Winter			1.6	52.0	
) min Winter			1.6	22.1	
) min Winter			1.6	5.1	
) min Winter			1.5	1.0	
) min Winter			1.3	0.4	
10080) min Winter	40.170	0.070	1.1	0.3	ОК
					arge Ti	me-Peak
	Storm	Rain		ed Discha	-	
	Storm Event	Rain (mm/hr)	Volum	e Volu	me	(mins)
					me	
60		(mm/hr) 48.611	Volum (m ³)	e Volu (m³	me	
	Event	(mm/hr) 48.611	Volum (m ³)	e Volu (m ³	me)	(mins)
120 180	Event min Winter min Winter min Winter	(mm/hr) 48.611 29.354 21.556	Volum (m ³) 0. 0.	e Volu (m ³ .0 .0 .0 .10	me) 90.7 09.5 20.6	(mins) 62 120 178
120 180	Event min Winter min Winter	(mm/hr) 48.611 29.354 21.556	Volum (m ³) 0. 0.	e Volu (m ³ .0 .0 .0 .10	me) 90.7 09.5	(mins) 62 120
120 180 240	Event min Winter min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501	Volum (m ³) 0. 0. 0. 0.	e Volu (m ³)	me) 90.7 09.5 20.6 28.4 39.9	(mins) 62 120 178
120 180 240 360	Event min Winter min Winter min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962	Volum (m ³) 0. 0. 0. 0. 0. 0.	e Volu (m ³) 0 10 0 11 0 12 0 12 0 14	me) 90.7 09.5 20.6 28.4 39.9 48.6	(mins) 62 120 178 236
120 180 240 360 480 600	Event min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m ³) 0 10 0 11 0 12 0 12 0 14	me) 90.7 09.5 20.6 28.4 39.9	(mins) 62 120 178 236 348
120 180 240 360 480 600 720	Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m ³) 0 10 0 12 0 12 0 12 0 14 0 14	me) 90.7 09.5 20.6 28.4 39.9 48.6	(mins) 62 120 178 236 348 456
120 180 240 360 480 600 720	Event min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m ³) 0 10 0 12 0 12 0 12 0 14 0 14 0 15 0 16	me)))))))))))))))))))	(mins) 62 120 178 236 348 456 554
120 180 240 360 480 600 720 960 1440	Event min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m³) (m³) 0 10 0 12 0 12 0 12 0 12 0 12 0 14 0 14 0 14 0 14 0 14 0 14 0 14	me) 00.7 09.5 20.6 28.4 39.9 48.6 55.7 61.6 71.3 35.6	(mins) 62 120 178 236 348 456 554 576 730 1038
120 180 240 360 480 600 720 960 1440 2160	Event min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m³) (m³) 0 10 0 12 0 12 0 12 0 12 0 12 0 14 0 14 0 14 0 14 0 14 0 14 0 14	me) 90.7 09.5 20.6 28.4 39.9 48.6 55.7 61.6 71.3	(mins) 62 120 178 236 348 456 554 576 730
120 180 240 360 480 600 720 960 1440 2160 2880	Event min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m³) .0 .9 .0 .10 .0 .12 .0 .21 .0 .21 .0 .21	00.7 09.5 20.6 28.4 39.9 48.6 55.7 61.6 71.3 35.6 00.8 12.2	(mins) 62 120 178 236 348 456 554 576 730 1038
120 180 240 360 480 600 720 960 1440 2160 2880 4320	Event min Winter min Winter	<pre>(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705</pre>	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m ³)	00.7 09.5 20.6 28.4 39.9 48.6 55.7 61.6 71.3 35.6 00.8 12.2 28.9	(mins) 62 120 178 236 348 456 554 576 730 1038 1476 1904 2636
120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705 1.348	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m³) (m³) 0 10 0 12 0 12 0 12 0 14 0 14 0 14 0 14 0 14 0 14 0 12 0 12 0 12 0 12 0 22 0 22 0 24	00.7 09.5 20.6 28.4 39.9 48.6 55.7 61.6 71.3 35.6 00.8 12.2 28.9 41.4	(mins) 62 120 178 236 348 456 554 576 730 1038 1476 1904
120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	Event min Winter min Winter	<pre>(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705 1.348 1.123</pre>	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m ³)	we 00.7 09.5 20.6 28.4 39.9 48.6 55.7 61.6 71.3 35.6 00.8 12.2 28.9 41.4 51.4	(mins) 62 120 178 236 348 456 554 576 730 1038 1476 1904 2636
120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	Event min Winter min Winter	(mm/hr) 48.611 29.354 21.556 17.210 12.501 9.962 8.347 7.221 5.740 4.148 2.992 2.371 1.705 1.348	Volum (m ³) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	e Volu (m ³)	00.7 09.5 20.6 28.4 39.9 48.6 55.7 61.6 71.3 35.6 00.8 12.2 28.9 41.4	(mins) 62 120 178 236 348 456 554 576 730 1038 1476 1904 2636 3120

DHA Transport Ltd		Page 3
Eclipse House Eclipse Park	Land adjacent to Great Chart	
Sittingbourne Road	Proposed storage pipe	L
Maidstone ME14 3EN		Micco
Date 03/05/2017 12:16	Designed by Spencer	Desinado
File storage pipe.srcx	Checked by	Diamaye
Causeway	Source Control 2015.1	1

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +20

<u>Time Area Diagram</u>

Total Area (ha) 0.222

Time	(mins)	Area
From:	To:	(ha)

0 4 0.222

Eclipse House	Ltd					age 4
	Eclipse Parl		ljacent to		art [
Sittingbourne	Road	Propose	ed storage	pipe		L
Maidstone ME1	4 3EN					Mirro
ate 03/05/201	7 12:16	Designe	ed by Spenc	er		Desinad
'ile storage p	pipe.srcx	Checked	l by			nanad
Causeway		Source	Control 20	15.1		
		<u>Model De</u>	tails			
	Storage	is Online Cove	er Level (m)	42.000		
		<u>Pipe Stru</u>	<u>ucture</u>			
		m) 1.375 X) 300.000 Inv	Length (m vert Level (m			
	<u>Hydro-Br</u>	ake Optimum@	® Outflow C	Control		
		Unit Referenc Design Head (m		2-2000-13	75-2000 1.375	
	De	esign Flow (1/s			2.0	
		Flush-Flc			culated	
		Objectiv Diameter (mm	re Minimise	upstream s	storage 62	
	1	invert Level (m	,		40.100	
M	inimum Outlet Pip				75	
	Suggested Manhol	e Diameter (mm	1)		1200	
	Contr	ol Points	Head (m) F	low (l/s)		
	Design Poi	nt (Calculated)) 1.375 ™ 0.272	2.0 1.6		
			B 0.553	1.0		
		over Head Range	e –	1.6		
	Mean Flow					
Hydro-Brake Op	Mean Flow al calculations h timum® as specifi timum® be utilise	ied. Should an	nother type o	f control	device oth	ner than a
Hydro-Brake Op Hydro-Brake Op invalidated	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m)	ied. Should ar ed then these s) Flow (1/s) D	other type o storage routi	f control ng calcula w (l/s) De	device oth ations will apth (m) F	ner than a . be
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200	ied. Should ar ed then these s Flow (1/s) D 0 1.9	oother type o storage routi epth (m) Flow 3.000	f control ng calcula w (1/s) De 2.9	device oth ations will epth (m) F: 7.000	er than a . be Low (1/s) 4.2
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.6 1.400	ied. Should ar ed then these s) Flow (1/s) 0 1.9 0 2.0	other type o storage routi epth (m) Flor 3.000 3.500	f control ng calcula w (1/s) De 2.9 3.1	device oth ations will epth (m) F: 7.000 7.500	er than a . be Low (1/s) 4.2 4.4
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200	ied. Should ar ed then these s) Flow (1/s) 0 1.9 0 2.0 0 2.1	oother type o storage routi epth (m) Flow 3.000	f control ng calcula w (1/s) De 2.9	device oth ations will epth (m) F: 7.000	er than a . be Low (1/s) 4.2
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flor 0.100 0.200 0.300 0.400 0.500	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000	ied. Should ar ed then these s) Flow (1/s) 0 1.9 0 2.0 0 2.1 0 2.3 0 2.4	epth (m) Flor 3.000 3.500 4.000 4.500 5.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500	ner than a be Low (1/s) 4.2 4.4 4.5 4.6
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flor 0.100 0.200 0.300 0.400 0.500	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flor 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flor 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8
Hydro-Brake Op Hydro-Brake Op invalidated Depth (m) Flow 0.100 0.200 0.300 0.400 0.500 0.600 0.800	al calculations h timum® as specifi timum® be utilise w (1/s) Depth (m) 1.4 1.200 1.6 1.400 1.6 1.600 1.5 2.000 1.4 2.200 1.6 2.400	ied. Should ar ed then these s Flow (1/s) D 1.9 0 2.0 0 2.1 0 2.3 0 2.4 0 2.5 0 2.6	epth (m) Flor 3.000 3.500 4.000 4.500 5.000 5.500 6.000	f control ng calcula w (1/s) De 2.9 3.1 3.3 3.4 3.6 3.8 3.9	device oth ations will Ppth (m) F: 7.000 7.500 8.000 8.500 9.000	ner than a be Low (1/s) 4.2 4.4 4.5 4.6 4.8