Foul Water Drainage Strategy Land at Common Road Sissinghurst Cranbrook TN17 2BH

RMB Consultants (Civil Engineering) Ltd December 2019

Tel 01227 472128 www.rmbconsultants.co.uk

This report has been prepared by RMB Consultants (Civil Engineering) Ltd in accordance with the instructions of their client for their sole and specific use. Any other persons who use any information contained herein do so at their own risk.

© RMB Consultants (Civil Engineering) Ltd 2019

RMF

CONTENTS

1.	Background and Introduction	3
2.	Development Location and Description	4
	Development Location	
	Development Proposals	
3.	Site Characteristics	6
4.	Foul Drainage Strategy	7
	Existing Infrastructure	
	Strategy Approach	
5.	Conclusion	11

Appendix A - Foul Drainage Strategy Design

1. Background and Introduction

This Foul Water Drainage Strategy accompanies a planning application submitted to Tunbridge Wells Borough Council. The planning application is for residential development on Land at Common Road, Sissinghurst, Cranbrook, TN17 2BH.

RME

2. Development Location and Description

Development Location

The site is situated to the west of Common Road and to the south of Frittenden Road, Sissinghurst. It is a greenfield site and covers 1.6ha, Figure 1. To the south of the site is Sissinghurst C of E Primary School.

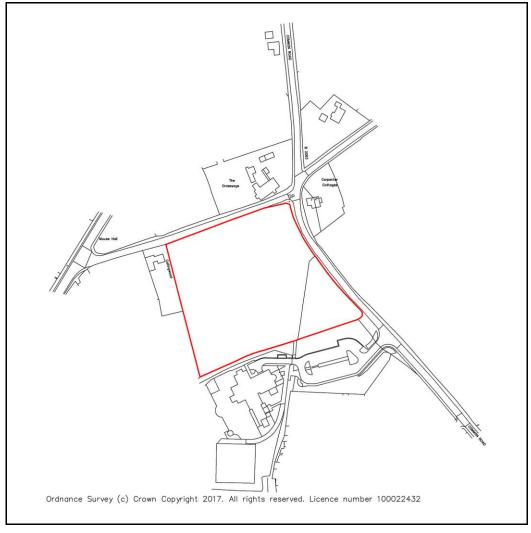


Figure 1. Site location plan.

Development Proposals

An outline planning application is being made for the construction of circa 18 dwellings with all matters reserved except for access, Figure 2.

Figure 2. Proposed development.

3. Site Characteristics

Topography- A detailed topographical survey has been carried out. The site falls from the north to the southeast. The site boundary along Frittenden Road is at 84.75mAOD (Above Ordnance Datum). The site falls to 79.00mAOD at the southeast corner, at an average gradient of approximately 1 in 26, Figure 3.

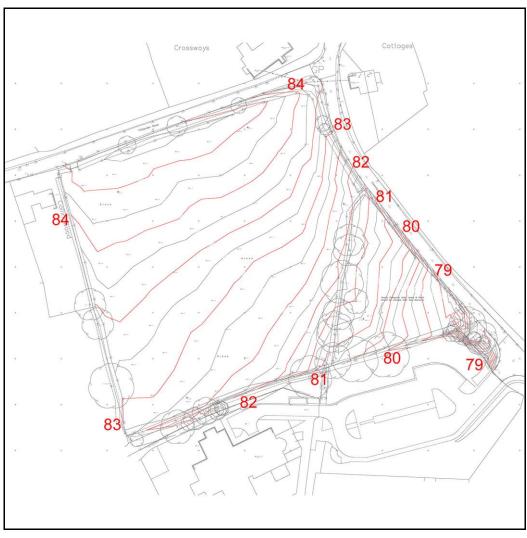


Figure 3. Local topography.

4. Foul Water Management Strategy

Existing Infrastructure

Southern Water is responsible for the adopted drainage infrastructure in Sissinghurst.

The public sewer record has been obtained from Southern Water, Figure 4.



Figure 4. Public sewer record with site edged red. (© Southern Water)

The site is not immediately served by public sewers. The nearest public foul sewers are to the west and south of the site.

The foul sewer to the west runs north to south along the A229. It is 175mm diameter and 85m west of the northwest corner of the site. The closest foul sewer south of the site, within Common Road, is 280m from the southeast corner of the site. The topography enables a connection by gravity to the sewers south of the site. Connection to the closer sewers within the A229 would require a pumped connection.

Sissinghurst C of E Primary School has been constructed to the south of the site. The school is connected to the public foul sewerage network. Drainage plans submitted to Tunbridge Wells Borough Council indicate that the foul drainage runs along Common Road, Figure 5.

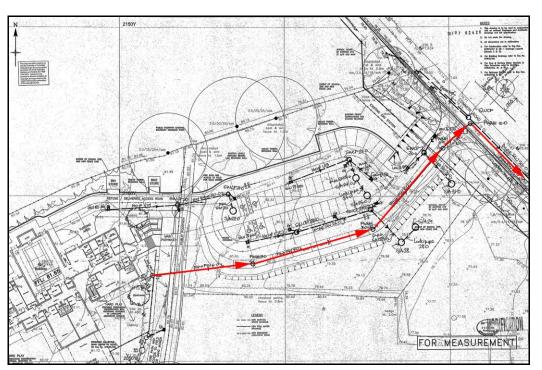


Figure 5. Sissinghurst C of E Primary School foul drainage.

Further investigation should be carried out to determine the location of the school drainage as this may offer a connection point closer to the proposed site than the nearest public sewer shown on the sewer record.

Strategy Approach

This strategy provides a solution for the on-site foul drainage in line with Sewers for Adoption 7th Edition. The topography allows foul water to drain to the public sewer within Common Road by gravity.

Sewers for Adoption 7th Edition states that design flow rates for dwellings should be 4,000 litres per dwelling per day. The proposed development creates circa 18 dwellings. Based on flows of 4,000 litres per dwelling per day the foul flows from the proposed development will be 0.8 l/s.

An illustrative foul drainage layout has been produced based on discharge by gravity to sewers within Common Road, Figure 6.

RM



Figure 6. Illustrative foul drainage layout.

The strategy has been modelled using MicroDrainage System 1 published by Innovyze to ensure that it meets Sewers for Adoption 7th Edition requirements. The model output is presented in Appendix A. Specific points used for the design include;

- Foul sewers with 10 or less connecting properties are modelled as 100mm diameter with a gradient no flatter than 1:80.
- Foul sewers with more than 10 connection properties are modelled as 150mm diameter with a gradient no flatter than 1 in 150.
- A minimum cover of 1.2m has been used for the preliminary design.

Southern Water introduced new connection charges on 1st April 2018. Network reinforcement charges are now recovered through the new infrastructure charge. This is currently £550 per property for developments of less than 20 properties.

Network reinforcement is work that needs to be carried out to the existing network to support development-related growth. This work is needed to ensure there is enough capacity in wastewater network to serve the new homes that are built without impacting on the service to existing customers.

Network Reinforcement may include the following activities:

• Enlarging existing pipes or installing larger new pipes to increase capacity for a specific development, or further expected growth in the future.

- Upsizing existing or proposed pumping stations.
- Providing new cross-connections to improve network capacity under differing network conditions.
- Other infrastructure required to provide network capacity for growth resulting from new development.

The introduction of the new infrastructure change means that the capacity of the existing sewer along Common Road is not a constraint on development, as any necessary upgrades will be carried out by Southern Water and paid for by the new infrastructure charge. The developer will still be responsible for delivering on-site sewers and providing the connection to the existing public sewer.

5. Conclusion

This Foul Water Drainage Strategy accompanies a planning application submitted to Tunbridge Wells Borough Council. The planning application is for residential development on Land at Common Road, Sissinghurst, Cranbrook, TN17 2BH.

An outline planning application is being made for the construction of circa 18 dwellings with all matters reserved except for access.

The site is not immediately served by public sewers. The nearest public foul sewers are to the west and south of the site.

The foul sewer to the west runs north to south along the A229. It is 175mm diameter and 85m west of the northwest corner of the site. The closest foul sewer south of the site, within Common Road, is 280m from the southeast corner of the site. The topography enables a connection by gravity to the sewers south of the site. Connection to the closer sewers within the A229 would require a pumped connection.

Sewers for Adoption 7th Edition states that design flow rates for dwellings should be 4,000 litres per dwelling per day. The proposed development creates circa 18 dwellings. Based on flows of 4,000 litres per dwelling per day the foul flows from the proposed development will be 0.8 l/s.

This strategy provides a solution for the on-site foul drainage in line with Sewers for Adoption 7th Edition. The topography allows foul water to be drained to the existing public sewer within Common Road by gravity.

The introduction of the new infrastructure change means that the capacity of the existing sewer along Common Road is not a constraint on development, as any necessary upgrades will be carried out by Southern Water and paid for by the new infrastructure charge. The developer will still be responsible for delivering on-site sewers and providing the connection to the existing public sewer.

The development can be adequately served by foul sewers and the proposals are considered to be acceptable from a foul drainage perspective.

Appendix A - Foul Drainage Strategy Design

RMB Consultants Ltd		Page 1
39 Cossington Road	Common Road	
Canterbury	Sissinghurst, TN27 2BH	4
Kent CT1 3HU	Foul Drainage Network	Micro
Date 16/12/2019	Designed by RB	
File Foul network 16-12-19.MDX	Checked by NOT FOR CONSTRUCTION	Drainage
Micro Drainage	Network 2017.1.2	

FOUL SEWERAGE DESIGN

Design Criteria for Foul - Main

Pipe Sizes STANDARD Manhole Sizes RMB

Industrial Flow (1/s/ha) 0.00 Add Flow / Climate Change (%) 0 Industrial Peak Flow Factor 0.00 Minimum Backdrop Height (m) 1.500 Flow Per Person (1/per/day) 222.00 Maximum Backdrop Height (m) 1.500 Persons per House 3.00 Min Design Depth for Optimisation (m) 1.200 Domestic (1/s/ha) 0.00 Min Vel for Auto Design only (m/s) 0.75 Domestic Peak Flow Factor 6.00 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Foul - Main

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type
F1.000 F1.001	47.235 29.853			0.000	2 2		1.500 1.500	0 0		Pipe/Conduit Pipe/Conduit
F2.000	33.759	0.422	80.0	0.000	4	0.0	1.500	0	100	Pipe/Conduit
F1.002	20.166	0.252	80.0	0.000	0	0.0	1.500	0	100	Pipe/Conduit
F3.000	42.476	2.174	19.5	0.000	4	0.0	1.500	0	100	Pipe/Conduit
F1.003 F1.004	32.313 19.095		80.0 150.0		3 0		1.500 1.500	0		Pipe/Conduit Pipe/Conduit
F4.000	16.211	2.005	8.1	0.000	3	0.0	1.500	0	100	Pipe/Conduit
	19.561 36.453				0 0		1.500 1.500	0 0		Pipe/Conduit Pipe/Conduit

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
F1.000 F1.001		0.000 0.000	0.0	2 4	0.0	9 9	0.26 0.49	0.75 1.35	5.9 10.6	0.1 0.2
F2.000	81.300	0.000	0.0	4	0.0	13	0.33	0.74	5.8	0.2
F1.002	80.878	0.000	0.0	8	0.0	17	0.41	0.74	5.8	0.4
F3.000	82.800	0.000	0.0	4	0.0	9	0.53	1.51	11.9	0.2
F1.003 F1.004		0.000 0.000	0.0	15 15	0.0	21 24	0.47 0.38	0.98 0.71	17.3 12.6	0.7 0.7
F4.000	82.100	0.000	0.0	3	0.0	6	0.64	2.35	18.5	0.1
F1.005 F1.006		0.000 0.000	0.0	18 18	0.0	26 17	0.40 0.78	0.71 1.88	12.6 33.2	0.8 0.8

©1982-2017 XP Solutions

RMB Consultants Ltd	Page 2	
39 Cossington Road	Common Road	
Canterbury	Sissinghurst, TN27 2BH	<u> </u>
Kent CT1 3HU	Foul Drainage Network	Micco
Date 16/12/2019	Designed by RB	Drainage
File Foul network 16-12-19.MDX	Checked by NOT FOR CONSTRUCTION	Diamaye
Micro Drainage	Network 2017.1.2	·

Network Design Table for Foul - Main

PN	-	Slope (1:X)	Houses	.se (1/s)	k (mm)		Section Type
F1.007 F1.008	26.180 10.000						Pipe/Conduit Pipe/Conduit

Network Results Table

PN				Add Flow (l/s)	-		-	
	0.000		18 18	0.0		0.76 0.50		

RMB Consultants Ltd	Page 3	
39 Cossington Road	Common Road	
Canterbury	Sissinghurst, TN27 2BH	<u> </u>
Kent CT1 3HU	Foul Drainage Network	Micro
Date 16/12/2019	Designed by RB	
File Foul network 16-12-19.MDX	Checked by NOT FOR CONSTRUCTION	Drainage
Micro Drainage	Network 2017.1.2	

Manhole Schedules for Foul - Main

MH Name	MH CL (m)	MH Depth (m)		MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
F1	84.000	1.300	Open	Manhole	450	F1.000	82.700	100				
F2	83.400	1.300	Open	Manhole	450	F1.001	82.100	100	F1.000	82.100	100	
F3	82.600	1.300	Open	Manhole	450	F2.000	81.300	100				
F4	83.100	2.222	Open	Manhole	450	F1.002	80.878	100	F1.001	80.878	100	
									F2.000	80.878	100	
F5	84.100	1.300	Open	Manhole	450	F3.000	82.800	100				
F6	82.900	2.324	Open	Manhole	1200	F1.003	80.576	150	F1.002	80.626	100	
									F3.000	80.626	100	
F7	83.100	2.928	Open	Manhole	1200	F1.004	80.172	150	F1.003	80.172	150	
F8	83.400	1.300	Open	Manhole	450	F4.000	82.100	100				
F9	82.800	2.755	Open	Manhole	1200	F1.005	80.045	150	F1.004	80.045	150	
									F4.000	80.095	100	
F10	81.500	1.586	Open	Manhole	1200	F1.006	79.914	150	F1.005	79.914	150	
F11	79.600	1.350	Open	Manhole	1200	F1.007	78.250	150	F1.006	78.250	150	
F12	78.500	1.350	Open	Manhole	1200	F1.008	77.150	150	F1.007	77.150	150	
F	0.000		Open	Manhole	0		OUTFALL		F1.008	77.021	150	

RMB Consultants Ltd		Page 4
39 Cossington Road	Common Road	
Canterbury	Sissinghurst, TN27 2BH	<u> </u>
Kent CT1 3HU	Foul Drainage Network	Micro
Date 16/12/2019	Designed by RB	Drainage
File Foul network 16-12-19.MDX	Checked by NOT FOR CONSTRUCTION	Diamage
Micro Drainage	Network 2017.1.2	

PIPELINE SCHEDULES for Foul - Main

<u>Upstream Manhole</u>

PN	-	Diam (mm)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000 F1.001	0	100 100	F1 F2	84.000 83.400			Open Manhole Open Manhole	
F2.000	0	100	F3	82.600	81.300	1.200	Open Manhole	450
F1.002	0	100	F4	83.100	80.878	2.122	Open Manhole	450
F3.000	0	100	F5	84.100	82.800	1.200	Open Manhole	450
F1.003	0	150	F6	82.900	80.576	2.174	Open Manhole	1200
F1.004	0	150	F7	83.100	80.172	2.778	Open Manhole	1200
F4.000	0	100	F8	83.400	82.100	1.200	Open Manhole	450
F1.005	0	150	F9	82.800	80.045	2.605	Open Manhole	1200
F1.006	0	150	F10	81.500	79.914	1.436	Open Manhole	1200
F1.007	0	150	F11	79.600	78.250	1.200	Open Manhole	1200
F1.008	0	150	F12	78.500	77.150	1.200	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)			I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
F1.000 F1.001	47.235 29.853	78.7 24.4	F2 F4	83.400 83.100	82.100 80.878		Open Manhole Open Manhole	
F2.000	33.759	80.0	F4	83.100	80.878	2.122	Open Manhole	450
F1.002	20.166	80.0	F6	82.900	80.626	2.174	Open Manhole	1200
F3.000	42.476	19.5	F6	82.900	80.626	2.174	Open Manhole	1200
F1.003	32.313	80.0	F7	83.100	80.172	2.778	Open Manhole	1200
F1.004	19.095	150.0	F9	82.800	80.045	2.605	Open Manhole	1200
F4.000	16.211	8.1	F9	82.800	80.095	2.605	Open Manhole	1200
F1.005	19.561	150.0	F10	81.500	79.914	1.436	Open Manhole	1200
F1.006	36.453	21.9	F11	79.600	78.250	1.200	Open Manhole	1200
F1.007		23.8	F12	78.500			Open Manhole	
	10.000		F	0.000			Open Manhole	