

## **Flood Risk Assessment**

for

Proposed Residential Development at Bentletts Scrap Yard Claygate Road Collier Street Kent

1129-1008

February 2016



#### Proposed Residential Development Bentletts Scrap Yard Claygate Road Collier Street Kent

#### Flood Risk Assessment With Drainage Strategy Layout

February 2016

| Prepared by | Reviewed by |
|-------------|-------------|
| Ray Clark   | Mark Dann   |



- 0. Introduction
- 1. Development Description and Location
- 2. Definition of Flood Hazard
- 3. Probability
- 4. Climate Change
- 5. Detailed Development Proposals
- 6. Flood Risk Management Measures
- 7. Off-site Impacts
- 8. Residual Risks
- 9. Conclusions

**Appendix A** Flood Risk Map (from SFRA) Flooding Hotspot map (from SFRA)

Appendix B Topographical Survey

Appendix C Proposed Drainage Strategy Layout

Appendix D Existing Surface Water Calculations

Appendix E Proposed Surface Water Calculations

Appendix F Conditions and Limitations



#### 0 INTRODUCTION

- a) Instructions were received from Wealden Homes to undertake a further Flood Risk Assessment to appraise a 25 dwelling development at Bentletts Scrap yard, Claygate Road, Collier Street, Kent. The previous assessment was for a 31 dwelling scheme.
- b) The assessment has been undertaken in compliance with the Technical Guidance to the National Planning Policy Framework March 2012 (NPPF).
- c) The information used for the preparation of this assessment is given in the Appendices.
- d) This assessment has been prepared by Ray Clark under guidance by RCD Consultants Ltd.
- e) The Client's attention is drawn to the Conditions and Limitations within Appendix F of this report.

#### 1 DEVELOPMENT DESCRIPTION & LOCATION

#### a) What type of development is proposed and where will it be located?

The development site comprises the construction of 25 dwellings. The site is located at Bentletts Scrap Yard, Claygate Road, Collier Street, Kent.



The site lies approximately 1Km from the nearest watercourse, River Teise, which is due southwest of the site. The subject site lies at approximately 50.5m AOD.

The existing site is classified as 'Brownfield' as it is an existing commercial vehicle scrap yard.



#### b) What is the vulnerability classification?

In accordance with Table 2 in NPPF (March 2012), the proposed buildings are classified as "more vulnerable" being of residential use.

#### c) Is the proposed development consistent with the Local Development Documents?

As far as Flood Risk is concerned the development is consistent with the Local Development Documents as it is located in Flood Zone 1, which is an area where **flooding does not occur**, refer to the Environment Agency mapping below and in the Appendices.

# d) Please provide evidence that the Sequential Test or Exception Test has been applied in the selection of this site for this development type?

The development is located within flood zone 1 and as identified in table 3 of the NPPF (March 2012) the development is appropriate for zone 1. The Sequential and Exception tests are therefore not required.



#### 2 DEFINITION OF THE FLOOD HAZARD

#### a) What sources of flooding could affect the site?

| Potential Source                     | Yes/No |  |
|--------------------------------------|--------|--|
| Flooding from Rivers                 | No     |  |
| Flooding from the Sea                | No     |  |
| Flooding from Land                   | No     |  |
| Flooding from Groundwater            | No     |  |
| Flooding from Sewers                 | No     |  |
| Flooding from Reservoirs, Canals and |        |  |
| other Artificial Sources             | No     |  |

## b) For each identified source, describe how flooding would occur, with reference to any historic records wherever these are available?

#### FLOODING FROM RIVERS

The River Teise is approximately 1Km southwest of the proposed development.

The site lies on a ridge of land approximately 5-10m above surrounding levels associated with the River Teise. These surrounding areas are known to flood during extended rainfall events.

The Strategic Flood Risk Assessment, SFRA, confirms that there have been no reported instances of flooding from watercourses within the vicinity of the site.

The SFRA was prepared by Mott MacDonald in 2008.

The risk of flooding within the development boundaries, from Rivers, is considered to be low.

#### FLOODING FROM THE SEA

The site is not close to the sea and there have been no recorded instances of the site flooding due to the Sea.



#### FLOODING FROM LAND

The site lies on a ridge of high ground bounded by ditches and slopes towards Claygate Road.

It is therefore considered that the risk of flooding from the land is low.

#### FLOODING FROM GROUNDWATER

The risk of flooding from ground water is considered to be low as the underlying strata is impermeable Weald clay.

#### FLOODING FROM SEWERS

There are no public sewers within the vicinity of the site and all existing private sewers will be removed as part of the demolition process.

The risk of flooding from sewers is therefore low.

FLOODING FROM RESERVIORS, CANALS AND OTHER ARTIFICIAL SOURCES

The SFRA confirms that there have been no instances of flooding within the vicinity of the site.

#### c) What are the existing surface water drainage arrangements for this site?

Surface water currently discharges to ditches adjacent to the site boundaries and as the site is predominantly hard standing this will be in the form of overland flows at an unrestricted rate during extreme storm events.

The existing hard standing areas have been measured at approximately 1.34Ha

The current owner has a trade effluent licence to discharge treated water to the ditches.



#### 3 PROBABILITY

#### a) Which flood zone is the site within?

The relevant flood map attached to the SFRA which is included in the Appendix represents current best estimates of zone 2 and zone 3 flooding as defined in Table 1 of NPPF March 2012.

| Zone 1  | Low Probability of river or sea flooding    |
|---------|---------------------------------------------|
| Zone 2  | Medium Probability of river or sea flooding |
| Zone 3a | High Probability of river or sea flooding   |
| Zone 3b | Functional Floodplain                       |

The map contained within the SFRA (extracts below) confirms that the site falls within Zone 1. A full copy of the map is included in Appendix A.



Extract from EA website showing risk of flooding from rivers



Extract from SFRA Map – Flood Risk Problems



#### b) If there is a Strategic Flood Risk Assessment covering this site, what does it show?

A SFRA has been prepared by Mott MacDonald and Maidstone Borough Council and is dated May 2008. This shows that the site lies with Flood Zone 1 and is at a low risk of flooding.

# c) What is the probability of the site flooding taking account of the contents of the SFRA and of any further site-specific assessments?

The SFRA confirms that the site is located in Zone 1.

There will be a **decrease in runoff** from the site and this will be attenuated to a flow rate of 5.11/s for the worst case 1 in 100 year storm event and will discharge to the stream on the northern boundary of the site.

The proposed drainage system will be designed to take account of a 30% climate change.

The residual risk of flooding is considered to be low.

#### d) What are the existing rates and volumes of run-off generated by this site?

The site is currently Brownfield. Estimated flow rates (including an increase in rainfall intensity of 30%) are given in the following table:

| Storm Return Period | Existing Flow Rate | Proposed Flow Rate |
|---------------------|--------------------|--------------------|
|                     | -                  | (30% CC)           |
| 2 year              | 169.7l/s           | 5.0                |
| 30 years            | 327.5l/s           | 5.0                |
| 100 years           | 452.5l/s           | 5.1                |
|                     |                    |                    |

Estimated volumes are as follows for storms of 6 hour duration (including an increase in rainfall intensity of 30% for the proposed development).

| Storm Return Period | Existing Volume                            | Proposed Volume                           |
|---------------------|--------------------------------------------|-------------------------------------------|
| 2 year<br>30 years  | 319.1m <sup>3</sup><br>573.6m <sup>3</sup> | 96.2m <sup>3</sup><br>172.9m <sup>3</sup> |
| 100 years           | 741.2m <sup>3</sup>                        | 223.5m <sup>3</sup>                       |



#### 4 CLIMATE CHANGE

#### a) How is flood risk at the site likely to be affected by climate change?

The proposed development is for residential use and can be categorised to a 60yr design life.

In accordance with table 5 of NPPF March 2012 a 30% increase in peak rainfall intensity has been included in the development design calculations.



#### 5 DETAILED DEVELOMENT PROPOSALS

## a) Please provide details of the development layout, referring to the relevant drawings.

The proposed redevelopment comprises 25 dwellings with an impermeable area of  $4040m^2$ .

The drives will be constructed in porous paved materials to mimic Greenfield conditions.

The access road will also be constructed in porous paving but will be connected to the main drainage system to act as surface water attenuation during the worst case 1 in 100 year storm event.

A balancing pond will be incorporated into the design to provide additional surface water attenuation

A site drainage strategy layout is provided in Appendix C.

The flood receptors for the proposed development are the Residential Units.

The proposed development is classified as more vulnerable to table 2 of NPPF March 2012.

With regard to the proposed drainage strategy there is a preference to dispose of surface water run by infiltration methods. If infiltration is not possible then discharging to a watercourse should be considered before discharge to a sewer. The following table considers each of the options:

| Method       | Yes/No | Reason                                                          |
|--------------|--------|-----------------------------------------------------------------|
| Infiltration | No     | Investigations show that the soils beneath the site are not     |
|              |        | capable of supporting an infiltration system.                   |
| Watercourse  | Yes    | There are ditches within the vicinity of the site               |
| Sewers       | No     | There are no public surface water sewers within the vicinity of |
|              |        | the site                                                        |

The surface water generated by the roofs will be attenuated in line with NPPF March 2012 and discharge will be restricted to 5.1l/s for the worst case 1 in 100 year storm event. Attenuation will be in the form of ponds, porous paving and large diameter sewers up to 600mm.

Discharge of surface water will be to the ditch running along the northern boundary of the site

## b) Where appropriate, demonstrate how land uses most sensitive to flood damage have been placed in areas within the site that are at least risk of flooding.

The entire site is located in area of low flood risk.



#### 6 FLOOD RISK MANAGEMENT MEASURES

## a) How will the site be protected from flooding, including the potential impacts of climate change, over the developments lifetime?

The site is located in Zone 1 and is not at risk of flooding and flood risk management measures are not required. The design of the proposed drainage system will include a 30% increase in rainfall intensity to allow for the effects of climate change over the design life of the buildings.

#### 7 OFF SITE IMPACTS

## a) How will you ensure that your proposed development and the measures to protect your site from flooding will not increase flood risk elsewhere?

The existing scrapyard site has an approximate impermeable area of 1.34Ha and this will be reduced to 0.404Ha.

The proposed drainage will discharge to the ditch at a restricted rate of 5.11/s for the worst case 1 in 100 year storm event.

The attenuation system will be designed to cater for a climate change allowance of 30%.

The surface water calculations shown in Appendix D and E show that both flow rate and volume of water entering the ditch will be significantly reduced as a result of the proposed development.

The risk of flooding elsewhere will therefore decrease as a result of the proposed development.

## b) How will you prevent run-off from the completed development causing an impact elsewhere?

The surface water will be restricted to 5.1l/s for the worst case 1 in 100 year storm event and the design/calculations will include a 30% Climate Change allowance.

This is considerably lower than the prevailing existing conditions, estimated to be 452.5l/s for the worst case 1 in 100 year storm event.

The 741.2m<sup>3</sup> volume of pre-development surface water runoff will be reduced to 223.5m<sup>3</sup> as a result of the new development thus providing an additional capacity of 517.7m<sup>3</sup> within the downstream watercourse.



#### 8 <u>RESIDUAL RISKS</u>

## a) What flood-related risks will remain after you have implemented the measures to protect the site from flooding?

The drainage system will require periodic maintenance the details of which should be included in the overall building management plan to be handed over to the appointed management company.

## b) How and by whom will these risks be managed over the lifetime of the development?

A management company will be appointed to ensure that the open spaces, ditches and ponds are maintained to ensure storage volume is not compromised within the attenuation system.



#### 9 <u>CONCLUSIONS</u>

- The site currently drains treated surface water under a trade effluent licence to ditches at the site boundaries.
- The proposed development is located in Zone 1 and is at low risk of flooding.
- The redevelopment will bring about a considerable reduction in surface water discharge due to the decrease in impermeable area of the site and this will reduce any flooding impact elsewhere.
- All hardstandings will be constructed in porous paving materials to mimic Greenfield conditions.
- Roof drainage will discharge to an attenuation system and shall be restricted to 5.1l/s for the worst case 1 in 100 year storm event.
- Water quality from the proposed development will be considerably higher than existing because the porous paving will filter silt and contaminants. Currently the majority of the site is allowed to discharge to the stream unchecked and without any treatment.
- The porous paving of the new development is a recognised construction technique for the removal of spilled hydrocarbons before surface water discharge to the watercourses, hence no petrol interceptor will be required.
- The discharge of treated foul water will require an environmental permit from the Environment Agency.



#### APPENDIX A:

Flood Risk Map (from SFRA) Flooding Hotspot map (from SFRA)





|           | Legend                           |           |
|-----------|----------------------------------|-----------|
|           | EA Main Rivers                   |           |
| n         | IDB Drains                       |           |
|           | Maidstone Borough<br>Boundary    |           |
| 1         | Area of Search                   |           |
|           |                                  |           |
|           |                                  |           |
|           |                                  |           |
|           | Source of Flooding               |           |
|           | Sewer Flooding                   |           |
|           | Surface Water Flooding           |           |
| 1         | Groundwater Flooding             |           |
|           | Unknown Source                   |           |
|           |                                  |           |
|           | Scale 1:95,000                   |           |
| B10 / 1 / | Maidstone Boro<br>SFRA           | ugh       |
|           | Figure 4.1<br>Reported Flood Inc | idents    |
| -         |                                  |           |
| 1         | May 2008                         |           |
|           | Mott<br>MacDonald                | MAIDSTONE |
|           |                                  |           |



## Legend

EA Main Rivers

**IDB** Drains

Maidstone Borough Boundary

Area of Search

**Rural Service Centre** 

Larger Rural Settlement

1 in 100-year Flood Extent

Scale 1:95,000

## **Maidstone Borough SFRA**

Figure 5.2 1 in 100 year Flood Extent (Flood Zone 3a)

### May 2008





#### APPENDIX B:

Topographical Survey





|                                          | Contraction of the Contraction o |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                          | Aston<br>Land<br>Surveys                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                          | 8 THAMES AVENUE, HIGH HALSTOW,<br>ROCHESTER, KENT. ME3 8TE<br>TELEPHONE 01634 251584<br>MOBILE 07831 628524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| an a | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                          | TREE LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>N</b>                                 | Hentletts Yard<br>Laddingford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                          | Site Survey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                          | Set         1:200         T.S.           Feb         '14         B.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                          | BYL/1260/1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          | <b>LUEES</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



#### APPENDIX C:

Proposed Drainage Strategy Layout





| DRAWING LEGEND      |                                     |  |  |
|---------------------|-------------------------------------|--|--|
| SUF                 | RFACE WATER DRAINAGE                |  |  |
|                     | PCC MANHOLE                         |  |  |
| •                   | INSPECTION CHAMBER                  |  |  |
| •                   | 450x900 ROAD GULLY                  |  |  |
|                     | SURFACE WATER SEWER                 |  |  |
|                     | POROUS PAVING<br>ROAD CONSTRUCTION  |  |  |
|                     | POROUS PAVING<br>DRIVE CONSTRUCTION |  |  |
| FOUL WATER DRAINAGE |                                     |  |  |
| PCC MANHOLE         |                                     |  |  |
| •                   | INSPECTION CHAMBER                  |  |  |
|                     | FOUL WATER SEWER                    |  |  |
|                     |                                     |  |  |

| STORM EVENT | EXISTING FLOW | PROPOSED FLOW |
|-------------|---------------|---------------|
| (1 IN)      | (l/s)         | (l/s)         |
| 2           | 2             | 5.0           |
| 30          | 30            | 5.0           |
| 100         | 100           | 5.1           |
|             |               |               |

| 360 MINUTE STORM DURATION |                              |       |  |
|---------------------------|------------------------------|-------|--|
| STORM EVENT<br>(1 IN)     | PROPOSED<br>VOLUME<br>(cu.m) |       |  |
| 2                         | 319.1                        | 96.2  |  |
| 30                        | 573.6                        | 172.9 |  |
| 100                       | 741.2                        | 223.5 |  |

# MANHOLE S10 TO RESTRICT FLOWS TO 5.11/s FOR THE WORST CASE 1 IN

NOTES

CONTRACTORS MUST VERIFY ALL DIMENSIONS ON SITE BEFORE COMMENCING ANY WORK ON SHOP DRAWINGS DO NOT SCALE FROM THIS DRAWING RCD CONSULTANTS LTD COPYRIGHT

NOTES

1. ALL DIMENSIONS IN MILLIMETERS UNLESS NOTED OTHERWISE. 2. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL OTHER ENGINEERING DRAWINGS AND CALCULATIONS ASSOCIATED WITH THIS PROJECT.

3. POROUS PAVING DEPTH SUBJECT TO SOAKAGE TESTING IN ACCORDANCE WITH BRE365.

4. DRAINAGE POSITIONS ARE INDICATIVE ONLY AND ARE SUBJECT TO DETAILED DESIGN. 5. SEWERAGE TREATMENT PLANT TO BE DESIGNED AND INSTALLED IN ACCORDANCE WITH MANUFACTURER'S RECOMMENDATION AND

SPECIFICATION. 6. ALL ADOPTABLE DRAINAGE WORKS ARE TO BE CARRIED OUT TO THE REQUIREMENTS AND FULL SATISFACTION OF SOUTHERN WATER

SERVICES LTD. 7. ALL ADOPTABLE HIGHWAY WORKS ARE TO BE CARRIED OUT TO THE REQUIREMENTS AND FULL SATISFACTION OF KENT COUNTY COUNCIL.

8. ALL SEWERS ARE TO BE CONSTRUCTED IN ACCORDANCE WITH WATER AUTHORITIES ASSOCIATION PUBLICATION `SEWERS FOR ADOPTION 7TH EDITION'. 9. ALL BUILDING DRAINAGE TO BE INSTALLED AND TESTED IN COMPLIANCE WITH THE BUILDING REGULATIONS 2000 DRAINAGE AND

WASTE DISPOSAL APPROVED DOCUMENT H 2002 EDITION. 10. ALL COMPONENTS AND MATERIALS ARE TO BE MANUFACTURED AND SUPPLIED IN ACCORDANCE WITH THE RELEVANT BRITISH STANDARDS, AND LAID AND BACKFILLED IN ACCORDANCE WITH MANUFACTURERS INSTRUCTIONS AND THE RELEVANT BRITISH STANDARDS.

11. THE CONTRACTOR SHALL, BEFORE COMMENCING THE WORKS, VERIFY ALL SITE AND SETTING OUT DIMENSIONS. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE TRUE AND PROPER SETTING OUT OF THE WORKS AND FOR THE CORRECTNESS OF THE POSITION, LEVELS, DIMENSIONS, AND ALIGNMENT OF ALL PARTS OF THE WORKS. 12. SMALL LIGHTWEIGHT ACCESS COVERS SHOULD BE SECURED (FOR EXAMPLE WITH SCREWS) TO DETER UNAUTHORISED ACCESS. 13. INSPECTION CHAMBERS AND MANHOLES IN BUILDINGS TO HAVE MECHANICALLY FIXED AIRTIGHT COVERS UNLESS THE DRAIN ITSELF HAS WATERTIGHT ACCESS COVERS. 14, ALL ABOVE GROUND DRAINAGE TO INCORPORATE RODDING ACCESS FACILITIES. 15. INSITU CONCRETE FOR USE IN GENERAL DRAINAGE WORKS, GRADE TO BS: 5328

17. ALL GULLIES TO BE TRAPPED.

18. SEWERAGE TREATMENT PLANT WILL BE SUBJECT TO ENVIRONMENTAL PERMIT APPLICATION TO THE ENVIRONMENT AGENCY. 19. ACCESS ROAD AND DRIVES TO BE CONSTRUCTED IN POROUS PAVING MATERIAL TO COMPLY WITH WATER QUALITY REQUIREMENTS

WITHIN THE SUDS MANUAL. 20. DISHCARGE TO THE EXISTING WATERCOURSE WILL BE SUBJECT TO KENT COUNTY COUNCIL AND INTERNAL DRAINAGE BOARD

APPROVAL. 21. HIGHWAY POROUS PAVING CONSTRUCTION AND BALANCING POND TO PROVIDE SURFACE WATER ATTENUATION DURING HEAVY RAINFALL EVENTS.

| P2<br>P1                                                                                                                                            | PLANNIN<br>PLANNIN     | IG ISSUE<br>IG ISSUE |         | 13.01.16<br>29.11.14 | MGC<br>MGC |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|---------|----------------------|------------|
| REV                                                                                                                                                 | AMEND                  | IENT                 |         | DATE                 | СНКД       |
| DRAWING S                                                                                                                                           | TATUS                  | FOR P                | LANNIN  | G                    |            |
| RCD CONSULTANTS LTD<br>23 HASTINGS ROAD, MAIDSTONE, KENT, ME15 7SH<br>TELEPHONE: 01622 768 300 MOBILE: 07702 052 137<br>EMAIL: southeast@rcd-uk.com |                        |                      |         |                      |            |
| PROJI<br>CLA<br>COL<br>KEN                                                                                                                          | ECT<br>YGATE<br>LIER S | E ROAD<br>TREET      |         |                      |            |
| DRAWING TITLE                                                                                                                                       |                        |                      |         |                      |            |
|                                                                                                                                                     |                        | STRATEGY             |         |                      | 5          |
| SCALI                                                                                                                                               |                        | DRAWN BY             | CHECKED | DAT                  | E          |
| 1:200<br>  NTS                                                                                                                                      | ) @ A0<br>@ A3         | RAC                  | MGC     | SEPT                 | 2014       |

REVISION

P2

DRAWING NUMBER

1129-1008-ENG-01

#### APPENDIX D:

Existing Surface Water Calculations



| RCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                |                |                |                         |                 |           |           |              | Pa           | ge 1          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|----------------|-------------------------|-----------------|-----------|-----------|--------------|--------------|---------------|
| 18 Deyley Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                |                | 1129           | 9-1008-E                | XIST            |           |           |              | 5            |               |
| Singleton                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                |                | CLAY           | CLAYGATE ROAD           |                 |           |           |              |              |               |
| Ashford TN23                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5HX           |                |                | COLI           | COLLIER STREET          |                 |           |           |              |              | linn          |
| Date JAN 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                |                | Desi           | .gned by                | RAC             |           |           |              | ň            | rainane       |
| File 1129-1008-EXISTING 1601 Checked by                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                |                |                |                         |                 |           |           |              |              |               |
| Micro Drainage Network 2015.1                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                |                |                |                         |                 |           |           |              |              |               |
| STORM SEWER DESIGN by the Modified Rational Method                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                |                |                |                         |                 |           |           |              |              |               |
| Design Criteria for Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                |                |                |                         |                 |           |           |              |              |               |
| Pipe Sizes STANDARD Manhole Sizes STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |                |                |                         |                 |           |           |              |              |               |
| FSR Rainfall Model - England and Wales<br>Return Period (years) 2 Add Flow / Climate Change (%) 0<br>M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.200<br>Ratio R 0.350 Maximum Backdrop Height (m) 1.500<br>Maximum Rainfall (mm/hr) 50 Min Design Depth for Optimisation (m) 1.200<br>Maximum Time of Concentration (mins) 30 Min Vel for Auto Design only (m/s) 1.00<br>Foul Sewage (l/s/ha) 0.000 Min Slope for Optimisation (1:X) 500<br>Volumetric Runoff Coeff. 0.750 |               |                |                |                |                         |                 |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | Desigi         | ieu wit        | TI TEAST                | IIIVELUS        | <b>,</b>  |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>Ti</u>      | lme Ar         | rea Di         | <u>agram f</u>          | or Sto          | orm       |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | Time           | Are            | a   Time                | Area            |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | (mins          | ) (ha          | ) (mins)                | (ha)            |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | 0-             | .1 0 9/        | 1 1_0                   | 0 100           |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | 0              | - 0.01         | 1 40                    | 0.499           |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Tota           | l Area         | Contr          | ibuting (               | ha) = 1         | 1.340     | 0         |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | T              | otal P         | ine Vol        | 11me (m <sup>3</sup> )  | = 45 2          | 29        |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 10             | otar I.        | the Aor        | unie (m )               | - 10.2          |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Net            | work 1         | Design         | n Table                 | for S           | torn      | <u>n</u>  |              |              |               |
| PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Length<br>(m) | Fall<br>(m)    | Slope<br>(1:X) | I.Area<br>(ha) | a T.E.<br>(mins)        | Base<br>Flow (] | è<br>L∕s) | k<br>(mm) | HYD<br>SECT  | DIA<br>(mm)  |               |
| 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 0 1 0 0        | 400 0          | 0 250          |                         |                 | 0 0       | 0 000     |              | <b>COO</b>   |               |
| 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.000        | 0.100          | 400.0          | 0.350          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
| 1.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 40.000      | 0.100          | 400.0          | 0.325          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
| 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 40.000      | 0.100          | 400.0          | 0.325          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | <u>Netw</u>    | ork R          | esults                  | Table           |           |           |              |              |               |
| PN Rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T.C.          | US/II<br>(m)   | ΞΣΙ<br>(b      | Area<br>a) F   | $\Sigma$ Base low (1/e) | Foul            | Add       | Flow      | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
| (1007) 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , (m±113)     | ()             | (11            | -, <u>-</u>    | (1/3)                   | (1/3)           | (-        | -, 5,     | (, 5)        | (1)3/        | (1) 57        |
| 1.000 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 5.55        | 50.00<br>40 00 | 0 0            | .350<br>690    | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 47.4          |
| 1.002 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 6.65        | 49.80          | 0 1            | .015           | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 137.4         |
| 1.003 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 7.20        | 49.70          | 0 1            | .340           | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 181.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                |                |                         |                 |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                |                |                         |                 |           |           |              |              |               |
| ©1982-2015 XP Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                |                |                |                         |                 |           |           |              |              |               |

| RCD                          |                 | Page 2     |
|------------------------------|-----------------|------------|
| 18 Deyley Way                | 1129-1008-EXIST |            |
| Singleton                    | CLAYGATE ROAD   | L.         |
| Ashford TN23 5HX             | COLLIER STREET  | Micco      |
| Date JAN 2016                | Designed by RAC |            |
| File 1129-1008-EXISTING 1601 | Checked by      | Dialitacje |
| Micro Drainage               | Network 2015.1  |            |

| Manhole | Schedules | for | Storm |  |
|---------|-----------|-----|-------|--|
|         |           |     |       |  |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| 1          | 51.000       | 1.000              | Open Manhole     | 1500                    | 1.000 | 50.000                          | 600              |       |                                 |                  |                  |
| 2          | 51.000       | 1.100              | Open Manhole     | 1500                    | 1.001 | 49.900                          | 600              | 1.000 | 49.900                          | 600              |                  |
| 3          | 51.000       | 1.200              | Open Manhole     | 1500                    | 1.002 | 49.800                          | 600              | 1.001 | 49.800                          | 600              |                  |
| 4          | 51.000       | 1.300              | Open Manhole     | 1500                    | 1.003 | 49.700                          | 600              | 1.002 | 49.700                          | 600              |                  |
| DITCH      | 51.000       | 1.400              | Open Manhole     | 450                     |       | OUTFALL                         |                  | 1.003 | 49.600                          | 600              |                  |
|            | 1            | 1                  | 1                | 1                       | 1     |                                 |                  | 1     |                                 |                  | i.               |

| RCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page 3                                                                                                                                                       |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 18 Deyley Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1129-1008-EXIST                                                                                                                                              |  |  |  |  |  |  |  |  |
| Singleton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CLAYGATE ROAD                                                                                                                                                |  |  |  |  |  |  |  |  |
| Ashford TN23 5HX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COLLIER STREET                                                                                                                                               |  |  |  |  |  |  |  |  |
| Date JAN 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Designed by RAC                                                                                                                                              |  |  |  |  |  |  |  |  |
| File 1129-1008-EXISTING 1601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Checked by                                                                                                                                                   |  |  |  |  |  |  |  |  |
| Micro Drainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Network 2015.1                                                                                                                                               |  |  |  |  |  |  |  |  |
| PIPELINE SCHEDULES for Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                              |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>stream Manhole</u>                                                                                                                                        |  |  |  |  |  |  |  |  |
| PN Hyd Diam MH C.Level<br>Sect (mm) Name (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I.Level D.Depth MH MH DIAM., L*W<br>(m) (m) Connection (mm)                                                                                                  |  |  |  |  |  |  |  |  |
| 1.000 o 600 1 51.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.000 0.400 Open Manhole 1500                                                                                                                               |  |  |  |  |  |  |  |  |
| 1.001 o 600 2 51.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.900 0.500 Open Manhole 1500                                                                                                                               |  |  |  |  |  |  |  |  |
| 1.002 	 0.000 	 3.000 	 3.000 	 1.003 	 0.600 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.000 	 4.51.0000 	 4.51.0000 	 4.51.0000 	 4.51.0000 	 4.51.0000 	 4.51.0000 	 4.51.0000 	 4.51.0000	 4.51.00000	 4.51.0000	 4.51.0000	 4.51.000 | 49.700 0.700 Open Manhole 1500                                                                                                                               |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Dow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>nstream Manhole</u>                                                                                                                                       |  |  |  |  |  |  |  |  |
| PN Length Slope MH C.Leve<br>(m) (1:X) Name (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | el I.Level D.Depth MH MH DIAM., L*W<br>(m) (m) Connection (mm)                                                                                               |  |  |  |  |  |  |  |  |
| 1.000 40.000 400.0 2 51.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 49.900 0.500 Open Manhole 1500                                                                                                                            |  |  |  |  |  |  |  |  |
| 1.001 40.000 400.0 3 51.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00 49.800 0.600 Open Manhole 1500                                                                                                                            |  |  |  |  |  |  |  |  |
| 1.002 40.000 400.0 4 51.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 00         49.700         0.700         Open         Manhole         1500           00         49.600         0.800         Open         Manhole         450 |  |  |  |  |  |  |  |  |
| 1.003 40.000 400.0 DITCH 51.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0 49.600 0.800 Open Mannole 450                                                                                                                              |  |  |  |  |  |  |  |  |
| <u>Free Flowing</u><br>Outfall Outfall C<br>Pipe Number Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Outrall Details for Storm         . Level I. Level Min D,L W         (m) (m) I. Level (mm) (mm)         (m)                                                  |  |  |  |  |  |  |  |  |
| 1.003 DITCH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.000 49.600 49.600 450 0                                                                                                                                   |  |  |  |  |  |  |  |  |
| Simulatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m cilleita foi Scoim                                                                                                                                         |  |  |  |  |  |  |  |  |
| Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000<br>Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000<br>Hot Start (mins) 0 MADD Factor * 10m <sup>3</sup> /ha Storage 2.000<br>Hot Start Level (mm) 0 Run Time (mins) 60<br>Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| Number of Input Hydrogr<br>Number of Online Cont<br>Number of Offline Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | aphs 0 Number of Storage Structures 0<br>rols 0 Number of Time/Area Diagrams 0<br>rols 0                                                                     |  |  |  |  |  |  |  |  |
| Synthet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ic Rainfall Details                                                                                                                                          |  |  |  |  |  |  |  |  |
| Rainfall ModelFSRProfile Type WinterReturn Period (years)2Cv (Summer)0.750Region England and WalesCv (Winter)0.840M5-60 (mm)20.000 Storm Duration (mins)15Ratio R0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| <u></u><br>@1982-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                              |  |  |  |  |  |  |  |  |
| ©1902-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Loto AL DOLUCIOND                                                                                                                                            |  |  |  |  |  |  |  |  |

| RCD                          |                 | Page 4    |
|------------------------------|-----------------|-----------|
| 18 Deyley Way                | 1129-1008-EXIST |           |
| Singleton                    | CLAYGATE ROAD   | <u> </u>  |
| Ashford TN23 5HX             | COLLIER STREET  | Micco     |
| Date JAN 2016                | Designed by RAC |           |
| File 1129-1008-EXISTING 1601 | Checked by      | Dialitada |
| Micro Drainage               | Network 2015.1  |           |

#### Summary of Results for 15 minute 2 year Winter (Storm)

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

| PN    | US/MH<br>Name | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) | Flow /<br>Cap. | Overflow<br>(1/s) | Pipe<br>Flow<br>(l/s) | Status |
|-------|---------------|-----------------------|----------------------------|---------------------------|----------------|-------------------|-----------------------|--------|
| 1.000 | 1             | 50.232                | -0.368                     | 0.000                     | 0.20           |                   | 56.9                  | OK     |
| 1.001 | 2             | 50.185                | -0.315                     | 0.000                     | 0.34           |                   | 97.9                  | OK     |
| 1.002 | 3             | 50.121                | -0.279                     | 0.000                     | 0.46           |                   | 134.7                 | OK     |
| 1.003 | 4             | 50.032                | -0.268                     | 0.000                     | 0.58           |                   | 169.7                 | OK     |

| RCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                |                |                |                         |                 |           |           |              | Pa           | ge 1          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------------|----------------|-------------------------|-----------------|-----------|-----------|--------------|--------------|---------------|
| 18 Deyley Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                |                | 1129           | 9-1008-E                | XIST            |           |           |              | Γ            |               |
| Singleton                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                |                | CLAY           | CLAYGATE ROAD           |                 |           |           |              |              |               |
| Ashford TN23                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5HX           |                |                | COLI           | COLLIER STREET          |                 |           |           |              |              | lirro         |
| Date JAN 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                |                | Desi           | .gned by                | RAC             |           |           |              | ň            | rainane       |
| File 1129-1008-EXISTING 1601 Checked by                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                |                |                |                         |                 |           |           |              |              |               |
| Micro Drainage Network 2015.1                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                |                |                |                         |                 |           |           |              |              |               |
| STORM SEWER DESIGN by the Modified Rational Method                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                |                |                |                         |                 |           |           |              |              |               |
| Design Criteria for Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                |                |                |                         |                 |           |           |              |              |               |
| Pipe Sizes STANDARD Manhole Sizes STANDARD                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                |                |                |                         |                 |           |           |              |              |               |
| FSR Rainfall Model - England and Wales<br>Return Period (years) 2 Add Flow / Climate Change (%) 0<br>M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.200<br>Ratio R 0.350 Maximum Backdrop Height (m) 1.500<br>Maximum Rainfall (mm/hr) 50 Min Design Depth for Optimisation (m) 1.200<br>Maximum Time of Concentration (mins) 30 Min Vel for Auto Design only (m/s) 1.00<br>Foul Sewage (l/s/ha) 0.000 Min Slope for Optimisation (1:X) 500<br>Volumetric Runoff Coeff. 0.750 |               |                |                |                |                         |                 |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | Desigi         | ieu wit        | TI TEAST                | IIIVELUS        | •         |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>Ti</u>      | lme Ar         | rea Di         | <u>agram f</u>          | or Sto          | orm       |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | Time           | Are            | a   Time                | Area            |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | (mins          | ) (ha          | ) (mins)                | (ha)            |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | 0-             | .1 0 9/        | 1 1_0                   | 0 100           |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | 0              | - 0.01         | 1 40                    | 0.499           |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Tota           | l Area         | Contr          | ibuting (               | ha) = 1         | 1.340     | 0         |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | T              | otal P         | ine Vol        | 11me (m <sup>3</sup> )  | = 45 2          | 29        |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 10             | otar I.        | the Aor        | unie (m )               | - 10.2          |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Net            | work           | Design         | n Table                 | for S           | torn      | <u>n</u>  |              |              |               |
| PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Length<br>(m) | Fall<br>(m)    | Slope<br>(1:X) | I.Area<br>(ha) | a T.E.<br>(mins)        | Base<br>Flow (] | è<br>L∕s) | k<br>(mm) | HYD<br>SECT  | DIA<br>(mm)  |               |
| 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 0 1 0 0        | 400 0          | 0 250          |                         |                 | 0 0       | 0 000     |              | <b>C</b> 00  |               |
| 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.000        | 0.100          | 400.0          | 0.350          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
| 1.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 40.000      | 0.100          | 400.0          | 0.325          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
| 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 40.000      | 0.100          | 400.0          | 0.325          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | <u>Netw</u>    | ork R          | esults                  | Table           |           |           |              |              |               |
| PN Rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T.C.          | US/II<br>(m)   | Ξ Σ Ι<br>(b    | Area<br>a) F   | $\Sigma$ Base low (1/e) | Foul            | Add       | Flow      | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
| (1007) 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , (m±113)     | ()             | (11            | -, <u>-</u>    | (1/3)                   | (1/3)           | (-        | -, 5,     | (, 5)        | (1)3/        | (1) 5)        |
| 1.000 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 5.55        | 50.00<br>40 00 | 0 0            | .350<br>690    | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 47.4          |
| 1.002 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 6.65        | 49.80          | 0 1            | .015           | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 137.4         |
| 1.003 50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 7.20        | 49.70          | 0 1            | .340           | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 181.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                |                |                         |                 |           |           |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |                |                |                         |                 |           |           |              |              |               |
| ©1982-2015 XP Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                |                |                |                         |                 |           |           |              |              |               |

| RCD                          |                 | Page 2     |
|------------------------------|-----------------|------------|
| 18 Deyley Way                | 1129-1008-EXIST |            |
| Singleton                    | CLAYGATE ROAD   | L.         |
| Ashford TN23 5HX             | COLLIER STREET  | Micco      |
| Date JAN 2016                | Designed by RAC |            |
| File 1129-1008-EXISTING 1601 | Checked by      | Dialitacje |
| Micro Drainage               | Network 2015.1  |            |

| Manhole | Schedules | for | Storm |  |
|---------|-----------|-----|-------|--|
|         |           |     |       |  |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| 1          | 51.000       | 1.000              | Open Manhole     | 1500                    | 1.000 | 50.000                          | 600              |       |                                 |                  |                  |
| 2          | 51.000       | 1.100              | Open Manhole     | 1500                    | 1.001 | 49.900                          | 600              | 1.000 | 49.900                          | 600              |                  |
| 3          | 51.000       | 1.200              | Open Manhole     | 1500                    | 1.002 | 49.800                          | 600              | 1.001 | 49.800                          | 600              |                  |
| 4          | 51.000       | 1.300              | Open Manhole     | 1500                    | 1.003 | 49.700                          | 600              | 1.002 | 49.700                          | 600              |                  |
| DITCH      | 51.000       | 1.400              | Open Manhole     | 450                     |       | OUTFALL                         |                  | 1.003 | 49.600                          | 600              |                  |
|            | 1            | 1                  | 1                | 1                       | 1     |                                 |                  | 1     |                                 |                  | i.               |

| RCD                                                                                                                                                                                                                                                                                       |                                                                                                                            | Page 3               |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|
| 18 Deyley Way                                                                                                                                                                                                                                                                             | 1129-1008-EXIST                                                                                                            |                      |  |  |  |  |  |  |  |
| Singleton                                                                                                                                                                                                                                                                                 | CLAYGATE ROAD                                                                                                              | L.                   |  |  |  |  |  |  |  |
| Ashford TN23 5HX                                                                                                                                                                                                                                                                          | COLLIER STREET                                                                                                             | Micco                |  |  |  |  |  |  |  |
| Date JAN 2016                                                                                                                                                                                                                                                                             | Designed by RAC                                                                                                            |                      |  |  |  |  |  |  |  |
| File 1129-1008-EXISTING 1601                                                                                                                                                                                                                                                              | Checked by                                                                                                                 | Dialige              |  |  |  |  |  |  |  |
| Micro Drainage                                                                                                                                                                                                                                                                            | Network 2015.1                                                                                                             |                      |  |  |  |  |  |  |  |
| PIPELINE SCHEDULES for Storm                                                                                                                                                                                                                                                              |                                                                                                                            |                      |  |  |  |  |  |  |  |
| <u>upstream Mannore</u>                                                                                                                                                                                                                                                                   |                                                                                                                            |                      |  |  |  |  |  |  |  |
| PN Hyd Diam MH C.Level<br>Sect (mm) Name (m)                                                                                                                                                                                                                                              | I.Level D.Depth MH MH DIAM.,<br>(m) (m) Connection (mm)                                                                    | L*W                  |  |  |  |  |  |  |  |
| 1.000 0 600 1 51.000                                                                                                                                                                                                                                                                      | 50.000 0.400 Open Manhole 1                                                                                                | 500                  |  |  |  |  |  |  |  |
| 1.001 0 600 2 51.000                                                                                                                                                                                                                                                                      | 49.900 0.500 Open Manhole 1                                                                                                | 500                  |  |  |  |  |  |  |  |
| 1.002 	0.000 	3.51.000<br>1.003 	0.600 	4.51.000                                                                                                                                                                                                                                          | 49.700 0.700 Open Manhole 1                                                                                                | 1500                 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                                                                            |                      |  |  |  |  |  |  |  |
| Dow                                                                                                                                                                                                                                                                                       | <u>mstream Manhole</u>                                                                                                     |                      |  |  |  |  |  |  |  |
| PN Length Slope MH C.Lev<br>(m) (1:X) Name (m)                                                                                                                                                                                                                                            | el I.Level D.Depth MH MH DIAM.<br>(m) (m) Connection (mm                                                                   | , L*W<br>)           |  |  |  |  |  |  |  |
| 1.000 40.000 400.0 2 51.0                                                                                                                                                                                                                                                                 | 00 49.900 0.500 Open Manhole                                                                                               | 1500                 |  |  |  |  |  |  |  |
| 1.001 40.000 400.0 3 51.0                                                                                                                                                                                                                                                                 | 00 49.800 0.600 Open Manhole                                                                                               | 1500                 |  |  |  |  |  |  |  |
| 1.002 40.000 400.0 4 51.0                                                                                                                                                                                                                                                                 | 00 49.700 0.700 Open Manhole                                                                                               | 1500                 |  |  |  |  |  |  |  |
| 1.003 40.000 400.0 DITCH 51.0                                                                                                                                                                                                                                                             | 00 49.600 0.800 Open Manhole                                                                                               | 450                  |  |  |  |  |  |  |  |
| <u>Free Flowing</u><br>Outfall Outfall (<br>Pipe Number Name                                                                                                                                                                                                                              | Outfall Details for Storm<br>C. Level I. Level Min D,L W<br>(m) (m) I. Level (mm) (mm)<br>(m)                              |                      |  |  |  |  |  |  |  |
| 1.003 DITCH                                                                                                                                                                                                                                                                               | 51.000 49.600 49.600 450 0                                                                                                 |                      |  |  |  |  |  |  |  |
| Simulati                                                                                                                                                                                                                                                                                  | <u>on Criteria for Storm</u>                                                                                               |                      |  |  |  |  |  |  |  |
| Volumetric Runoff Coeff 0.840Foul Sewage per hectare (1/s) 0.000Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Run Time (mins)60Manhole Headloss Coeff (Global)0.500Output Interval (mins)1 |                                                                                                                            |                      |  |  |  |  |  |  |  |
| Number of Online Cont<br>Number of Offline Cont                                                                                                                                                                                                                                           | crols 0 Number of Time/Area Diagrams 0<br>crols 0                                                                          |                      |  |  |  |  |  |  |  |
| Synthet                                                                                                                                                                                                                                                                                   | <u>ic Rainfall Details</u>                                                                                                 |                      |  |  |  |  |  |  |  |
| Rainfall Model<br>Return Period (years)<br>Region Engla<br>M5-60 (mm)<br>Ratio R                                                                                                                                                                                                          | FSR Profile Type Winte<br>30 Cv (Summer) 0.75<br>and and Wales Cv (Winter) 0.84<br>20.000 Storm Duration (mins) 1<br>0.350 | er<br>50<br>40<br>15 |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                           |                                                                                                                            |                      |  |  |  |  |  |  |  |
| ©1902                                                                                                                                                                                                                                                                                     | 2010 AL DOLUCIONS                                                                                                          |                      |  |  |  |  |  |  |  |

| RCD                          |                 | Page 4    |
|------------------------------|-----------------|-----------|
| 18 Deyley Way                | 1129-1008-EXIST |           |
| Singleton                    | CLAYGATE ROAD   | <u> </u>  |
| Ashford TN23 5HX             | COLLIER STREET  | Micco     |
| Date JAN 2016                | Designed by RAC |           |
| File 1129-1008-EXISTING 1601 | Checked by      | Dialitada |
| Micro Drainage               | Network 2015.1  | 1         |

#### Summary of Results for 15 minute 30 year Winter (Storm)

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

|       |       | Water  | Surcharged | Flooded |        |          | Pipe  |               |
|-------|-------|--------|------------|---------|--------|----------|-------|---------------|
| DN    | US/MH | Level  | Depth      | Volume  | Flow / | Overflow | Flow  | <u>Chatra</u> |
| PN    | Name  | (m)    | (m)        | (m-)    | Cap.   | (1/5)    | (1/5) | Status        |
| 1.000 | 1     | 50.484 | -0.116     | 0.000   | 0.34   |          | 99.8  | OK            |
| 1.001 | 2     | 50.458 | -0.042     | 0.000   | 0.62   |          | 181.8 | OK            |
| 1.002 | 3     | 50.400 | 0.000      | 0.000   | 0.88   |          | 255.7 | OK            |
| 1.003 | 4     | 50.308 | 0.008      | 0.000   | 1.12   |          | 327.5 | SURCHARGED    |

| RCD                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                         |                 |           |           |              | Pa           | ge 1          |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|-------------------------|-----------------|-----------|-----------|--------------|--------------|---------------|
| 18 Deyley Way                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                | 1129           | 9-1008-E                | XIST            |           |           |              | 5            |               |
| Singleton                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                | CLAY           | GATE RO                 | AD              |           |           |              | 4            |               |
| Ashford TN23                  | 5HX                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                | COLI           | JIER STR                | EET             |           |           |              | N            | linn          |
| Date JAN 2016                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                | Desi           | .gned by                | RAC             |           |           |              | ň            | rainane       |
| File 1129-1008                | -EXISTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NG 16          | 01             | Chec           | cked by                 |                 |           |           |              |              |               |
| Micro Drainage                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                | Netw           | ork 201                 | 5.1             |           |           |              |              |               |
| <u>S</u>                      | TORM SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WER D          | ESIGN          | by tł          | ne Modif                | ied R           | atic      | onal I    | Metho        | <u>d</u>     |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>[</u>       | )esign         | Crit           | eria fo                 | r Stor          | <u>rm</u> |           |              |              |               |
|                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pipe Si        | zes ST         | ANDARD         | Manhole                 | Sizes           | STAN      | DARD      |              |              |               |
| Max<br>Maximum Time of<br>Vol | FSR Rainfall Model - England and Wales<br>Return Period (years) 2 Add Flow / Climate Change (%) 0<br>M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.200<br>Ratio R 0.350 Maximum Backdrop Height (m) 1.500<br>Maximum Rainfall (mm/hr) 50 Min Design Depth for Optimisation (m) 1.200<br>Maximum Time of Concentration (mins) 30 Min Vel for Auto Design only (m/s) 1.00<br>Foul Sewage (l/s/ha) 0.000 Min Slope for Optimisation (1:X) 500<br>Volumetric Runoff Coeff. 0.750 |                |                |                |                         |                 |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Desigi         | ieu wit        | TI TEAST                | IIIVELUS        | •         |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Ti</u>      | lme Ar         | rea Di         | <u>agram f</u>          | or Sto          | orm       |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Time           | Are            | a   Time                | Area            |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | (mins          | ) (ha          | ) (mins)                | (ha)            |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0-             | .1 0 9/        | 1 1_0                   | 0 100           |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 0              | - 0.01         | 1 40                    | 0.499           |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tota           | l Area         | Contr          | ibuting (               | ha) = 1         | 1.340     | 0         |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T              | otal P         | ine Vol        | 11me (m <sup>3</sup> )  | = 45 2          | 29        |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10             | otar I.        | the Aor        | unie (m )               | - 10.2          |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Net            | work 1         | Design         | n Table                 | for S           | torn      | <u>n</u>  |              |              |               |
| PN                            | Length<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fall<br>(m)    | Slope<br>(1:X) | I.Area<br>(ha) | a T.E.<br>(mins)        | Base<br>Flow (] | è<br>L∕s) | k<br>(mm) | HYD<br>SECT  | DIA<br>(mm)  |               |
| 1 000                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 1 0 0        | 400 0          | 0 250          |                         |                 | 0 0       | 0 000     |              | <b>C</b> 00  |               |
| 1.000                         | 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.100          | 400.0          | 0.350          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
| 1.002                         | 2 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.100          | 400.0          | 0.325          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
| 1.003                         | 3 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.100          | 400.0          | 0.325          | 0.00                    |                 | 0.0       | 0.600     | 0            | 600          |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | <u>Netw</u>    | ork R          | esults                  | Table           |           |           |              |              |               |
| PN Rain                       | T.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | US/II<br>(m)   | Ξ Σ Ι<br>(b    | Area<br>a) F   | $\Sigma$ Base low (1/e) | Foul            | Add       | Flow      | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(1/s) |
| (1007) 111                    | , (m±113)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ()             | (11            | -, <u>-</u>    | (1/3)                   | (1/3)           | (-        | -, 5,     | (, 5)        | (1)3/        | (1) 57        |
| 1.000 50.0                    | 0 5.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.00<br>40 00 | 0 0            | .350<br>690    | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 47.4          |
| 1.002 50.0                    | 0 6.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.80          | 0 1            | .015           | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 137.4         |
| 1.003 50.0                    | 0 7.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 49.70          | 0 1            | .340           | 0.0                     | 0.0             |           | 0.0       | 1.21         | 342.5        | 181.5         |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                         |                 |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |                |                         |                 |           |           |              |              |               |
|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ©1982          | -2015          | XP Sol                  | utions          | 5         |           |              |              |               |

| RCD                          |                 | Page 2     |
|------------------------------|-----------------|------------|
| 18 Deyley Way                | 1129-1008-EXIST |            |
| Singleton                    | CLAYGATE ROAD   | L.         |
| Ashford TN23 5HX             | COLLIER STREET  | Micco      |
| Date JAN 2016                | Designed by RAC |            |
| File 1129-1008-EXISTING 1601 | Checked by      | Dialitacje |
| Micro Drainage               | Network 2015.1  |            |

| Manhole | Schedules | for | Storm |  |
|---------|-----------|-----|-------|--|
|         |           |     |       |  |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| 1          | 51.000       | 1.000              | Open Manhole     | 1500                    | 1.000 | 50.000                          | 600              |       |                                 |                  |                  |
| 2          | 51.000       | 1.100              | Open Manhole     | 1500                    | 1.001 | 49.900                          | 600              | 1.000 | 49.900                          | 600              |                  |
| 3          | 51.000       | 1.200              | Open Manhole     | 1500                    | 1.002 | 49.800                          | 600              | 1.001 | 49.800                          | 600              |                  |
| 4          | 51.000       | 1.300              | Open Manhole     | 1500                    | 1.003 | 49.700                          | 600              | 1.002 | 49.700                          | 600              |                  |
| DITCH      | 51.000       | 1.400              | Open Manhole     | 450                     |       | OUTFALL                         |                  | 1.003 | 49.600                          | 600              |                  |
|            | I            | 1                  | 1                | 1                       | 1     |                                 |                  | 1     |                                 |                  | i.               |

| RCD                                                                              |                                                        | Page 3    |  |  |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------|-----------|--|--|--|--|
| 18 Deyley Way                                                                    | 1129-1008-EXIST                                        |           |  |  |  |  |
| Singleton                                                                        | CLAYGATE ROAD                                          | Mar I     |  |  |  |  |
| Ashford TN23 5HX                                                                 | COLLIER STREET                                         | Micco     |  |  |  |  |
| Date JAN 2016                                                                    | Designed by RAC                                        |           |  |  |  |  |
| File 1129-1008-EXISTING 1601                                                     | Checked by                                             | Digiliada |  |  |  |  |
| Micro Drainage                                                                   | Network 2015.1                                         |           |  |  |  |  |
| PIPELINE                                                                         | SCHEDULES for Storm                                    |           |  |  |  |  |
| Up:                                                                              | stream Manhole                                         |           |  |  |  |  |
| PN Hyd Diam MH C.Level                                                           | I.Level D.Depth MH MH DIAM.,                           | L*W       |  |  |  |  |
| Sect (mm) Name (m)                                                               | (m) (m) Connection (mm)                                |           |  |  |  |  |
| 1.000 o 600 1 51.000                                                             | 50.000 0.400 Open Manhole                              | 1500      |  |  |  |  |
| $1.001 	ext{ o } 600 	ext{ 2 } 51.000$<br>$1.002 	ext{ o } 600 	ext{ 3 } 51.000$ | 49.900 0.500 Open Manhole<br>49.800 0.600 Open Manhole | 1500      |  |  |  |  |
| 1.003 o 600 4 51.000                                                             | 49.700 0.700 Open Manhole                              | 1500      |  |  |  |  |
| Down                                                                             | nstream Manhole                                        |           |  |  |  |  |
| PN Length Slope MH C Leve                                                        | NITLEVELD DENTH MH MH DIAN                             | I         |  |  |  |  |
| (m) (1:X) Name (m)                                                               | (m) (m) Connection (m                                  | m)        |  |  |  |  |
| 1.000 40.000 400.0 2 51.00                                                       | 0 49.900 0.500 Open Manhole                            | 1500      |  |  |  |  |
| 1.001 40.000 400.0 3 51.00                                                       | 0 49.800 0.600 Open Manhole                            | 1500      |  |  |  |  |
| 1.002 40.000 400.0 4 51.00<br>1.003 40.000 400 0 DTTCH 51.00                     | 0 49.700 0.700 Open Manhole                            | 1500      |  |  |  |  |
| 1.003 40.000 400.0 Dilen 51.00                                                   | 49.000 0.000 Open Mannore                              | 400       |  |  |  |  |
| <u>Free</u> Flowing (                                                            | Dutfall Details for Storm                              |           |  |  |  |  |
| Outfall Outfall C                                                                | . Level I. Level Min D,L W                             |           |  |  |  |  |
| Pipe Number Name                                                                 | (m) (m) I. Level (mm) (mm)<br>(m)                      |           |  |  |  |  |
| 1.003 DITCH                                                                      | 51.000 49.600 49.600 450 0                             |           |  |  |  |  |
| Simulatic                                                                        | n Criteria for Storm                                   |           |  |  |  |  |
|                                                                                  |                                                        |           |  |  |  |  |
| Volumetric Runoff Coeff                                                          | 0.840 Foul Sewage per hectare (1/s)                    | ) 0.000   |  |  |  |  |
| Hot Start (mins)                                                                 | 0 MADD Factor * 10m <sup>3</sup> /ha Storage           | e 2.000   |  |  |  |  |
| Hot Start Level (mm)                                                             | 0 Run Time (mins)                                      | ) 60      |  |  |  |  |
| Manhole Headloss Coeff (Global)                                                  | 0.500 Output Interval (mins)                           | ) 1       |  |  |  |  |
| Number of Input Hydrogra                                                         | aphs 0 Number of Storage Structures 0                  |           |  |  |  |  |
| Number of Online Contr                                                           | rols 0 Number of Time/Area Diagrams 0                  |           |  |  |  |  |
| Number of Offline Controls 0                                                     |                                                        |           |  |  |  |  |
| <u>Synthet</u> :                                                                 | <u>ic Rainfall Details</u>                             |           |  |  |  |  |
| Rainfall Model FSR Profile Type Winter                                           |                                                        |           |  |  |  |  |
| Return Period (years)                                                            | 100 Cv (Summer) 0.7                                    | 750       |  |  |  |  |
| M5-60 (mm)                                                                       | 20.000 Storm Duration (mins)                           | 15        |  |  |  |  |
| Ratio R                                                                          | 0.350                                                  |           |  |  |  |  |
|                                                                                  |                                                        |           |  |  |  |  |
|                                                                                  |                                                        |           |  |  |  |  |
|                                                                                  |                                                        |           |  |  |  |  |
| e1000                                                                            | 2015 VD Colutions                                      |           |  |  |  |  |
| ©1982-                                                                           | 2013 AF SOLUCIONS                                      |           |  |  |  |  |

| RCD                          |                 | Page 4    |
|------------------------------|-----------------|-----------|
| 18 Deyley Way                | 1129-1008-EXIST |           |
| Singleton                    | CLAYGATE ROAD   | <u> </u>  |
| Ashford TN23 5HX             | COLLIER STREET  | Micco     |
| Date JAN 2016                | Designed by RAC |           |
| File 1129-1008-EXISTING 1601 | Checked by      | Dialitada |
| Micro Drainage               | Network 2015.1  | 1         |

#### Summary of Results for 15 minute 100 year Winter (Storm)

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

| PN    | US/MH<br>Name | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) | Flow /<br>Cap. | Overflow<br>(1/s) | Pipe<br>Flow<br>(l/s) | Status     |
|-------|---------------|-----------------------|----------------------------|---------------------------|----------------|-------------------|-----------------------|------------|
| 1.000 | 1             | 50.702                | 0.102                      | 0.000                     | 0.45           |                   | 132.6                 | FLOOD RISK |
| 1.001 | 2             | 50.669                | 0.169                      | 0.000                     | 0.85           |                   | 247.0                 | SURCHARGED |
| 1.002 | 3             | 50.593                | 0.193                      | 0.000                     | 1.21           |                   | 352.8                 | SURCHARGED |
| 1.003 | 4             | 50.434                | 0.134                      | 0.000                     | 1.55           |                   | 452.5                 | SURCHARGED |

| RCD                       |                       | Page 1    |
|---------------------------|-----------------------|-----------|
| 18 Deyley Way             | 1129-1008-EXIST       |           |
| Singleton                 | CLAYGATE ROAD         | <u> </u>  |
| Ashford TN23 5HX          | COLLIER STREET        | Micco     |
| Date JAN 2016             | Designed by RAC       |           |
| File 1129-1008-EXIST.srcx | Checked by            | Dialitada |
| Micro Drainage            | Source Control 2015.1 |           |

#### Summary of Results for 100 year Return Period

|                   | Storm<br>Event |        | corm Max<br>rent Level<br>(m) |       | Max<br>Volume<br>(m³) | Status     |
|-------------------|----------------|--------|-------------------------------|-------|-----------------------|------------|
| 360               | min            | Summer | 50.412                        | 4.412 | 661.8                 | O K        |
| 3 <mark>60</mark> | min            | Winter | 50.942                        | 4.942 | 741.2                 | Flood Risk |

| Storm |     |        | Rain    | Flooded | Time-Peak |
|-------|-----|--------|---------|---------|-----------|
| Event |     |        | (mm/hr) | Volume  | (mins)    |
|       |     |        |         | (m³)    |           |
| 360   | min | Summer | 10.975  | 0.0     | 368       |
| 360   | min | Winter | 10.975  | 0.0     | 368       |

| RCD                       |                       | Page 2    |
|---------------------------|-----------------------|-----------|
| 18 Deyley Way             | 1129-1008-EXIST       |           |
| Singleton                 | CLAYGATE ROAD         | <u> </u>  |
| Ashford TN23 5HX          | COLLIER STREET        | Micco     |
| Date JAN 2016             | Designed by RAC       |           |
| File 1129-1008-EXIST.srcx | Checked by            | Dialitage |
| Micro Drainage            | Source Control 2015.1 |           |

#### <u>Rainfall Details</u>

|        | Rainfall Model |         | FSR       | Winter Storms         | Yes   |
|--------|----------------|---------|-----------|-----------------------|-------|
| Return | Period (years) |         | 100       | Cv (Summer) (         | ).750 |
|        | Region         | England | and Wales | Cv (Winter) (         | ).840 |
|        | M5-60 (mm)     |         | 20.000    | Shortest Storm (mins) | 360   |
|        | Ratio R        |         | 0.350     | Longest Storm (mins)  | 360   |
|        | Summer Storms  |         | Yes       | Climate Change %      | +0    |

#### <u>Time Area Diagram</u>

Total Area (ha) 1.340

| Time  | (mins) | Area  | Time  | (mins) | Area  |  |
|-------|--------|-------|-------|--------|-------|--|
| From: | To:    | (ha)  | From: | To:    | (ha)  |  |
| 0     | 4      | 0.841 | 4     | 8      | 0.499 |  |

| RCD                       |                       | Page 3    |
|---------------------------|-----------------------|-----------|
| 18 Deyley Way             | 1129-1008-EXIST       |           |
| Singleton                 | CLAYGATE ROAD         | L.        |
| Ashford TN23 5HX          | COLLIER STREET        | Micco     |
| Date JAN 2016             | Designed by RAC       |           |
| File 1129-1008-EXIST.srcx | Checked by            | Dialitaye |
| Micro Drainage            | Source Control 2015.1 |           |

#### Model Details

Storage is Online Cover Level (m) 51.000

#### <u>Tank or Pond Structure</u>

Invert Level (m) 46.000

#### Depth (m) Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>)

0.000 150.0 5.000 150.0

#### APPENDIX E:

Proposed Surface Water Calculations



| RCD       |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |                 |             |                  |                 |                  |       | Pa         | ge 1            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------|-------------|------------------|-----------------|------------------|-------|------------|-----------------|
| 18 Deyley | y Way                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |               |                 | 112         | 9-1008-E         | ROPOSE          | ED               |       |            |                 |
| Singleton | n                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |                 | CLA         | YGATE RC         | AD              |                  |       | 4          |                 |
| Ashford   | TN23 5                                                                                                                                                                                                                                                                                                                                                                                                                                      | бНХ           |               |                 | COL         | COLLIER STREET   |                 |                  |       |            | licco           |
| Date JAN  | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               |                 | Des         | igned by         | RAC             |                  |       |            | nciu<br>cainago |
| File 1129 | 9-1008-                                                                                                                                                                                                                                                                                                                                                                                                                                     | PROPOS        | ED 16         | 01              | Che         | cked by          |                 |                  |       |            | Ialliage        |
| Micro Dra | ainage                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |                 | Net         | work 201         | 5.1             |                  |       | ·          |                 |
|           | <u>ST</u>                                                                                                                                                                                                                                                                                                                                                                                                                                   | ORM SE        | WER D         | ESIGN           | by t        | he Modif         | fied Ra         | ational 1        | Metho | <u>1</u>   |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Ī             | Design          | <u>Crit</u> | <u>ceria fo</u>  | <u>r Stor</u>   | <u>°m</u>        |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             | P             | ipe Si        | zes ST          | ANDARI      | Manhole          | Sizes :         | STANDARD         |       |            |                 |
| Maximum T | FSR Rainfall Model - England and WalesReturn Period (years)2Add Flow / Climate Change (%)30M5-60 (mm)20.000Minimum Backdrop Height (m)0.000Ratio R0.350Maximum Backdrop Height (m)10.000Maximum Rainfall (mm/hr)50Min Design Depth for Optimisation (m)1.200Maximum Time of Concentration (mins)30Min Vel for Auto Design only (m/s)1.00Foul Sewage (1/s/ha)0.000Min Slope for Optimisation (1:X)500Volumetric Runoff Coeff.0.7500.7500.000 |               |               |                 |             |                  |                 |                  |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               | Desigr          | ned wi      | th Level         | Inverts         |                  |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | ТÍ            | ime Ar          | rea Di      | lagram f         | or Sto          | rm               |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |                 |             | -                |                 |                  |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Time<br>(mine | Area            | I Tim       | e Area           | Time            | Area             |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | (mins         | ) (na)          | (m11)       | is) (na)         | (mins)          | (na)             |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 0-            | 4 0.18          | 7 4         | -8 0.211         | 8-12            | 0.006            |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Tota          | al Area         | Contr       | ibuting          | (ha) = (        | 0.404            |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |                 |             |                  | ()              |                  |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Т             | otal Pi         | ipe Vo      | lume (m³)        | = 66.5          | 86               |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | Net           | work 1          | Desig       | n Table          | for St          | torm             |       |            |                 |
|           | DN                                                                                                                                                                                                                                                                                                                                                                                                                                          | Toneth        | <b>F</b> -11  | 01              | T . D       |                  | Deee            | . 1-             |       | DIA        |                 |
|           | PN                                                                                                                                                                                                                                                                                                                                                                                                                                          | Length<br>(m) | raii<br>(m)   | (1:X)           | (ha)        | a T.E.<br>(mins) | Base<br>Flow (1 | е к<br>./s) (mm) | SECT  | (mm)       |                 |
|           | 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05 000        | 0 0 5 0       | 500 0           | 0 00        |                  |                 | 0 0 0 000        |       | 450        |                 |
|           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.000        | 0.050         | 400.0           | 0.02        | 5 5.00<br>6 0.00 |                 | 0.0 0.600        | 0     | 450<br>450 |                 |
|           | 1.002                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.000        | 0.050         | 500.0           | 0.04        | 7 0.00           |                 | 0.0 0.600        | 0     | 450        |                 |
|           | 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34.000        | 0.080         | 425.0           | 0.01        | 3 0.00           |                 | 0.0 0.600        | 0     | 450        |                 |
|           | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.000        | 0.080         | 450.0           | 0.04        | 3 0.00           |                 | 0.0 0.600        | 0     | 600        |                 |
|           | 1.005                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.000        | 0.100         | 390.0           | 0.03        | 2 0.00           |                 | 0.0 0.600        | 0     | 600<br>600 |                 |
|           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.000        |               | 100.0           | 0.00        | 0.00             |                 | 0.0 0.000        | 0     | 000        |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               | <u>Netw</u>     | ork H       | Results          | <u>Table</u>    |                  |       |            |                 |
| PN        | Rain                                                                                                                                                                                                                                                                                                                                                                                                                                        | T.C.          | US/II         | ι ΣΙ.           | Area        | Σ Base           | Foul            | Add Flow         | Vel   | Cap        | Flow            |
|           | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                     | (mins)        | (m)           | (h              | a) I        | :10w (l/s)       | (1/s)           | (1/s)            | (m/s) | (1/s)      | (1/s)           |
| 1.000     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.46          | 49.90         | 0 0             | .025        | 0.0              | 0.0             | 1.0              | 0.90  | 143.5      | 4.4             |
| 1.001     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.79          | 49.85         | 0 0             | .071        | 0.0              | 0.0             | 2.9              | 1.01  | 160.7      | 12.5            |
| 1.002     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.25          | 49.80         | U 0             | .118        | 0.0              | 0.0             | 4.8              | 0.90  | 143.5      | 20.8            |
| 1.003     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.83          | 49.75         | U 0             | .131        | 0.0              | 0.0             | 5.3              | U.98  | 155.8      | 23.1            |
| 1.004     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.36          | 49.67         | 0 0             | .⊥/4<br>206 | 0.0              |                 | 7.1              | 1 22  | 322.7      | 30.6<br>36 3    |
| 1.005     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.05          | 49.39         | 0 0             | .200        | 0.0              | 0.0             | 0.4<br>11.8      | 1.21  | 342.5      | 51.2            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               | @1982           | -2015       | VP SOL           | utions          |                  |       |            |                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               | x - / x - · · / |             | / //             |                 |                  |       |            |                 |

| RCD                          |                    | Page 2   |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |
| Micro Drainage               | Network 2015.1     | L        |

#### Network Design Table for Storm

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ise<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) |
|-------|---------------|-------------|----------------|----------------|----------------|------------|--------------|-----------|-------------|-------------|
| 1.007 | 28.000        | 0.060       | 466.7          | 0.020          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |
| 1.008 | 57.000        | 0.140       | 407.1          | 0.093          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |
| 1.009 | 5.000         | 0.050       | 100.0          | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |

#### <u>Network Results Table</u>

| PN    | Rain    | T.C.   | US/IL  | Σ I.Area | Σ Base     | Foul  | Add Flow | Vel   | Cap   | Flow  |
|-------|---------|--------|--------|----------|------------|-------|----------|-------|-------|-------|
|       | (mm/hr) | (mins) | (m)    | (ha)     | Flow (l/s) | (l/s) | (1/s)    | (m/s) | (l/s) | (l/s) |
| 1.007 | 50.00   | 8.47   | 49.460 | 0.311    | 0.0        | 0.0   | 12.6     | 1.12  | 316.8 | 54.7  |
| 1.008 | 49.51   | 9.26   | 49.400 | 0.404    | 0.0        | 0.0   | 16.3     | 1.20  | 339.5 | 70.4  |
| 1.009 | 49.42   | 9.29   | 49.260 | 0.404    | 0.0        | 0.0   | 16.3     | 2.44  | 688.6 | 70.4  |

| RCD                          |                    | Page 3   |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | L.       |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Dialiaye |
| Micro Drainage               | Network 2015.1     |          |

| Manhole | Schedules | for | Storm |  |
|---------|-----------|-----|-------|--|
|         |           |     |       |  |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| 1          | 51.000       | 1.100              | Open Manhole     | 1500                    | 1.000 | 49.900                          | 450              |       |                                 |                  |                  |
| 2          | 51.000       | 1.150              | Open Manhole     | 1500                    | 1.001 | 49.850                          | 450              | 1.000 | 49.850                          | 450              |                  |
| 3          | 51.000       | 1.200              | Open Manhole     | 1500                    | 1.002 | 49.800                          | 450              | 1.001 | 49.800                          | 450              |                  |
| 4          | 51.000       | 1.250              | Open Manhole     | 1500                    | 1.003 | 49.750                          | 450              | 1.002 | 49.750                          | 450              |                  |
| 5          | 51.000       | 1.330              | Open Manhole     | 1500                    | 1.004 | 49.670                          | 600              | 1.003 | 49.670                          | 450              |                  |
| 6          | 51.000       | 1.410              | Open Manhole     | 1500                    | 1.005 | 49.590                          | 600              | 1.004 | 49.590                          | 600              |                  |
| 7          | 51.000       | 1.510              | Open Manhole     | 1500                    | 1.006 | 49.490                          | 600              | 1.005 | 49.490                          | 600              |                  |
| 8          | 51.000       | 1.540              | Open Manhole     | 1500                    | 1.007 | 49.460                          | 600              | 1.006 | 49.460                          | 600              |                  |
| 9          | 51.000       | 1.600              | Open Manhole     | 1500                    | 1.008 | 49.400                          | 600              | 1.007 | 49.400                          | 600              |                  |
| 10         | 51.000       | 1.740              | Open Manhole     | 1500                    | 1.009 | 49.260                          | 600              | 1.008 | 49.260                          | 600              |                  |
|            | 51.000       | 1.790              | Open Manhole     | 450                     |       | OUTFALL                         |                  | 1.009 | 49.210                          | 600              |                  |

| RCD                          |                    | Page 4   |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |
| Micro Drainage               | Network 2015.1     |          |

#### PIPELINE SCHEDULES for Storm

#### <u>Upstream Manhole</u>

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1 000 | 0           | 450          | 1          | 51 000         | 49 900         | 0 650          | Open Manhole     | 1500                  |
| 1.001 | 0           | 450          | 2          | 51.000         | 49.850         | 0.700          | Open Manhole     | 1500                  |
| 1.002 | 0           | 450          | 3          | 51.000         | 49.800         | 0.750          | Open Manhole     | 1500                  |
| 1.003 | 0           | 450          | 4          | 51.000         | 49.750         | 0.800          | Open Manhole     | 1500                  |
| 1.004 | 0           | 600          | 5          | 51.000         | 49.670         | 0.730          | Open Manhole     | 1500                  |
| 1.005 | 0           | 600          | 6          | 51.000         | 49.590         | 0.810          | Open Manhole     | 1500                  |
| 1.006 | 0           | 600          | 7          | 51.000         | 49.490         | 0.910          | Open Manhole     | 1500                  |
| 1.007 | 0           | 600          | 8          | 51.000         | 49.460         | 0.940          | Open Manhole     | 1500                  |
| 1.008 | 0           | 600          | 9          | 51.000         | 49.400         | 1.000          | Open Manhole     | 1500                  |
| 1.009 | 0           | 600          | 10         | 51.000         | 49.260         | 1.140          | Open Manhole     | 1500                  |

#### Downstream Manhole

| PN    | Length | Slope | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|-------|--------|-------|------|---------|---------|---------|--------------|---------------|
|       | (m)    | (1:X) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
|       |        |       |      |         |         |         |              |               |
| 1.000 | 25.000 | 500.0 | 2    | 51.000  | 49.850  | 0.700   | Open Manhole | 1500          |
| 1.001 | 20.000 | 400.0 | 3    | 51.000  | 49.800  | 0.750   | Open Manhole | 1500          |
| 1.002 | 25.000 | 500.0 | 4    | 51.000  | 49.750  | 0.800   | Open Manhole | 1500          |
| 1.003 | 34.000 | 425.0 | 5    | 51.000  | 49.670  | 0.880   | Open Manhole | 1500          |
| 1.004 | 36.000 | 450.0 | 6    | 51.000  | 49.590  | 0.810   | Open Manhole | 1500          |
| 1.005 | 39.000 | 390.0 | 7    | 51.000  | 49.490  | 0.910   | Open Manhole | 1500          |
| 1.006 | 12.000 | 400.0 | 8    | 51.000  | 49.460  | 0.940   | Open Manhole | 1500          |
| 1.007 | 28.000 | 466.7 | 9    | 51.000  | 49.400  | 1.000   | Open Manhole | 1500          |
| 1.008 | 57.000 | 407.1 | 10   | 51.000  | 49.260  | 1.140   | Open Manhole | 1500          |
| 1.009 | 5.000  | 100.0 |      | 51.000  | 49.210  | 1.190   | Open Manhole | 450           |

Free Flowing Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.009 51.000 49.210 49.210 450 0

#### Simulation Criteria for Storm

Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 30.000 Hot Start (mins) 0 MADD Factor \* 10m<sup>3</sup>/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 360 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 3 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0

| RCD                          |                    |         |  |  |  |
|------------------------------|--------------------|---------|--|--|--|
| 18 Deyley Way                | 1129-1008-PROPOSED |         |  |  |  |
| Singleton                    | CLAYGATE ROAD      | L'      |  |  |  |
| Ashford TN23 5HX             | COLLIER STREET     | Micco   |  |  |  |
| Date JAN 2016                | Designed by RAC    |         |  |  |  |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye |  |  |  |
| Micro Drainage               | Network 2015.1     | ·       |  |  |  |

#### Simulation Criteria for Storm

#### Synthetic Rainfall Details

| Rainfall Model        | FSR               | Profile Type          | Winter |
|-----------------------|-------------------|-----------------------|--------|
| Return Period (years) | 2                 | Cv (Summer)           | 0.750  |
| Region                | England and Wales | Cv (Winter)           | 0.840  |
| M5-60 (mm)            | 20.000            | Storm Duration (mins) | 180    |
| Ratio R               | 0.350             |                       |        |

| BCD                                                                                                            |                                                          |                                             |                                          |                                  | Page 6                                |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------|---------------------------------------|
|                                                                                                                | 1129-100                                                 |                                             | סי                                       |                                  | rage o                                |
| I Deyrey Way                                                                                                   | 1129-100                                                 | DO-FROFOSE                                  | U<br>U                                   |                                  |                                       |
| Singleton                                                                                                      | CLAYGAT                                                  | S ROAD                                      |                                          |                                  | m m                                   |
| Ashford TN23 5HX                                                                                               | COLLIER                                                  | STREET                                      |                                          |                                  | Mirro                                 |
| Date JAN 2016                                                                                                  | Designed                                                 | d by RAC                                    |                                          |                                  | Desinado                              |
| File 1129-1008-PROPOSED 16                                                                                     | 01 Checked                                               | by                                          |                                          |                                  | Diamaye                               |
| Micro Drainage                                                                                                 | Network                                                  | 2015.1                                      |                                          |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| <u></u>                                                                                                        | nline Controls                                           | for Stor                                    | m                                        |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| <u>Hydro-Brake Optimum®</u>                                                                                    | Manhole: 7, D                                            | S/PN: 1.00                                  | 06, Volum                                | e (m³):                          | 13.3                                  |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                | Unit Reference                                           | MD-SHE-01                                   | 05-5000-100                              | 0-5000                           |                                       |
|                                                                                                                | Design Head (m)                                          |                                             |                                          | 1.000                            |                                       |
|                                                                                                                | Design Flow (l/s)                                        |                                             | ~ 1                                      | 5.0                              |                                       |
|                                                                                                                | Flush-Flom                                               | . Minimiaa                                  | Calc                                     | ulated                           |                                       |
|                                                                                                                | Diameter (mm)                                            | MINIMISE                                    | upstream s                               | 105                              |                                       |
|                                                                                                                | Invert Level (m)                                         |                                             |                                          | 49.490                           |                                       |
| Minimum Outlet P                                                                                               | ipe Diameter (mm)                                        |                                             |                                          | 150                              |                                       |
| Suggested Manh                                                                                                 | ole Diameter (mm)                                        |                                             |                                          | 1200                             |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| Con                                                                                                            | trol Points                                              | Head (m) F                                  | 'low (l/s)                               |                                  |                                       |
| Design Po                                                                                                      | oint (Calculated)                                        | 1.000                                       | 5.0                                      |                                  |                                       |
|                                                                                                                | Flush-Flo™                                               | 0.295                                       | 4.9                                      |                                  |                                       |
|                                                                                                                | Kick-Flo®                                                | 0.636                                       | 4.0                                      |                                  |                                       |
| Mean Flow                                                                                                      | v over Head Range                                        | -                                           | 4.3                                      |                                  |                                       |
| The hydrological calculations<br>Hydro-Brake Optimum® as speci<br>Hydro-Brake Optimum® be utili<br>invalidated | nave been based<br>fied. Should and<br>sed then these st | on the Head<br>other type d<br>corage routi | d/Discharge<br>of control<br>ing calcula | relation<br>device o<br>tions wi | nsnip for the<br>ther than a<br>ll be |
| Depth (m) Flow (l/s) Depth (                                                                                   | m) Flow (l/s) De                                         | pth (m) Flo                                 | w (l/s) De                               | pth (m)                          | Flow (l/s)                            |
| 0.100 3.6 1.2                                                                                                  | 00 5.4                                                   | 3.000                                       | 8.3                                      | 7.000                            | 12.4                                  |
| 0.200 4.8 1.4                                                                                                  | 00 5.8                                                   | 3.500                                       | 8.9                                      | 7.500                            | 12.8                                  |
| 0.300 4.9 1.6                                                                                                  | 6.2                                                      | 4.000                                       | 9.5                                      | 8.000                            | 13.2                                  |
| 0.400 4.9 1.8                                                                                                  | 00 6.5                                                   | 4.500                                       | 10.1                                     | 8.500                            | 13.6                                  |
| 0.500 4.7 2.0                                                                                                  | 00 6.9                                                   | 5.000                                       | 10.6                                     | 9.000                            | 14.0                                  |
| 0.600 4.3 2.2                                                                                                  | 00 7.2                                                   | 5.500                                       | 11.1                                     | 9.500                            | 14.4                                  |
|                                                                                                                | 00 7.5                                                   | 6.000                                       | 12.0                                     |                                  |                                       |
| 1.000 5.0 2.8                                                                                                  | /.8                                                      | 6.500                                       | 12.0                                     |                                  |                                       |
| <u>Hydro-Brake Optimum®</u>                                                                                    | Manhole: 10, D                                           | S/PN: 1.0                                   | 09, Volum                                | ne (m³):                         | : 18.8                                |
|                                                                                                                | Unit Reference                                           | MD-SHE-010                                  | 0-5000-135                               | 0-5000                           |                                       |
|                                                                                                                | Design Head (m)                                          | , 110 0110 010                              | T                                        | 1.350                            |                                       |
|                                                                                                                | Design Flow (1/s)                                        |                                             |                                          | 5.0                              |                                       |
|                                                                                                                | Flush-Flo <sup>m</sup>                                   | 4                                           | Calc                                     | ulated                           |                                       |
|                                                                                                                | Objective                                                | e Minimise                                  | upstream s                               | torage                           |                                       |
|                                                                                                                | Diameter (mm)                                            |                                             |                                          | 100                              |                                       |
|                                                                                                                | Invert Level (m)                                         |                                             |                                          | 49.260                           |                                       |
| Minimum Outlet P<br>Suggested Maph                                                                             | ipe Diameter (mm)<br>ole Diameter (mm)                   |                                             |                                          | 1200                             |                                       |
| Suggested Malli                                                                                                | ore prameter (nun)                                       |                                             |                                          | 1200                             |                                       |
| Con                                                                                                            | trol Points                                              | Head (m) F                                  | 'low (l/s)                               |                                  |                                       |
| Desian Pa                                                                                                      | oint (Calculated)                                        | 1.350                                       | 5.0                                      |                                  |                                       |
|                                                                                                                | Flush-Flo™                                               | 0.401                                       | 5.0                                      |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                | 01002_2015 VD                                            | Solutions                                   |                                          |                                  |                                       |
|                                                                                                                | WI JOZ Z / U I I AP                                      | DUTUE                                       |                                          |                                  |                                       |

| RCD                                                                                  |                                                     |                                             |                               |                                             |                                       | Page 7                                   |  |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------|--|--|
| 18 Deyley Way                                                                        |                                                     | 1129-1008                                   | -PROP                         | OSED                                        |                                       |                                          |  |  |
| Singleton                                                                            |                                                     | CLAYGATE ROAD                               |                               |                                             |                                       | 4                                        |  |  |
| Ashford TN23 5HX                                                                     |                                                     | COLLIER STREET                              |                               |                                             |                                       |                                          |  |  |
| Date JAN 2016                                                                        |                                                     | Designed                                    | by RA                         | .C                                          |                                       |                                          |  |  |
| File 1129-1008-PROPC                                                                 | DSED 1601                                           | Checked b                                   | у                             |                                             |                                       | Diamaye                                  |  |  |
| Micro Drainage                                                                       |                                                     | Network 2                                   | 015.1                         |                                             |                                       |                                          |  |  |
| <u>Hydro-Brake Op</u>                                                                | timum® Manhol                                       | le: 10, DS                                  | /PN:                          | 1.009, Vol                                  | Lume (m³)                             | : 18.8                                   |  |  |
|                                                                                      | Control Po                                          | ints H                                      | lead (m                       | n) Flow (l/s                                | )                                     |                                          |  |  |
| М                                                                                    | Mean Flow over H                                    | Kick-Flo®<br>Head Range                     | 0.82                          | - 4.                                        | 0<br>4                                |                                          |  |  |
| The hydrological calc<br>Hydro-Brake Optimum®<br>Hydro-Brake Optimum®<br>invalidated | ulations have b<br>as specified.<br>be utilised the | peen based o<br>Should anot<br>en these sto | n the l<br>her tyj<br>rage ro | Head/Discha<br>pe of contro<br>puting calco | rge relati<br>ol device<br>ılations w | onship for the<br>other than a<br>ill be |  |  |
| Depth (m) Flow (l/s)                                                                 | Depth (m) Flow                                      | w (l/s) Dept                                | :h (m)                        | Flow (l/s)                                  | Depth (m)                             | Flow (l/s)                               |  |  |
| 0.100 3.3                                                                            | 1.200                                               | 4.7                                         | 3.000                         | 7.3                                         | 7.000                                 | 10.8                                     |  |  |
| 0.200 4.6                                                                            | 1.400                                               | 5.1                                         | 3.500                         | 7.8                                         | 7.500                                 | 11.2                                     |  |  |
| 0.300 4.9                                                                            | 1.600                                               | 5.4                                         | 4.000                         | 8.3                                         | 8.000                                 | 11.6                                     |  |  |
| 0.400 5.0                                                                            | 2 000                                               | 5.7                                         | 4.500                         | 8.8                                         | 9 000                                 | 11.9                                     |  |  |
| 0.600 4.8                                                                            | 2.200                                               | 6.3                                         | 5.500                         | 9.7                                         | 9.500                                 | 12.5                                     |  |  |
| 0.800 4.1                                                                            | 2.400                                               | 6.5                                         | 6.000                         | 10.1                                        |                                       | 1210                                     |  |  |
| 1.000 4.3                                                                            | 2.600                                               | 6.8                                         | 6.500                         | 10.5                                        |                                       |                                          |  |  |
|                                                                                      |                                                     |                                             |                               |                                             |                                       |                                          |  |  |

| RCD                              |                                                               | Page 8     |
|----------------------------------|---------------------------------------------------------------|------------|
| 18 Deyley Way                    | 1129-1008-PROPOSED                                            |            |
| Singleton                        | CLAYGATE ROAD                                                 | L'         |
| Ashford TN23 5HX                 | COLLIER STREET                                                | Micco      |
| Date JAN 2016                    | Designed by RAC                                               |            |
| File 1129-1008-PROPOSED 1601     | Checked by                                                    | Diamaye    |
| Micro Drainage                   | Network 2015.1                                                |            |
| <u>Storage</u>                   | Structures for Storm                                          |            |
| Porous Car Par                   | <u>k Manhole: 3, DS/PN: 1.002</u>                             |            |
| Infiltration Coefficient Base    | 'm/hr) 0.00000 Width (m)                                      | 10.0       |
| Membrane Percolation (m          | m/hr) 1000 Length (m)                                         | 34.0       |
| Max Percolation                  | (1/s) 94.4 Slope (1:X)                                        | 1000.0     |
| Safety H                         | Cactor 2.0 Depression Storage (mm)                            | 5          |
| Invert Leve                      | el (m) 50.500 Cap Volume Depth (m)                            | 3<br>0.000 |
|                                  |                                                               |            |
| <u>Tank or Pond</u>              | Manhole: 5, DS/PN: 1.004                                      |            |
| Inver                            | rt Level (m) 50.000                                           |            |
| Depth (m) Are                    | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> )         |            |
| 0.000                            | 40.0   1.000 100.0                                            |            |
| <u>Porous Car Par</u>            | <u>k Manhole: 7, DS/PN: 1.006</u>                             |            |
| Infiltration Coefficient Base (  | (m/hr) 0.00000 Width (m)                                      | 5.0        |
| Membrane Percolation (m          | m/hr) 1000 Length (m)                                         | 120.0      |
| Max Percolation<br>Safety F      | (1/5) 100.7 Slope (1:X)<br>Pactor 2.0 Depression Storage (mm) | 1000.0     |
| Por                              | cosity 0.30 Evaporation (mm/day)                              | 3          |
| Invert Leve                      | el (m) 50.500 Cap Volume Depth (m)                            | 0.000      |
| Porous Car Park                  | Manhole: 10, DS/PN: 1.009                                     |            |
| Infiltration Coofficient Deserve | (m/br) 0 00000 [1]:                                           | 5 0        |
| Membrane Percolation (m          | m/hr) = 1000 Length (m)                                       | 92.0       |
| Max Percolation                  | (l/s) 127.8 Slope (1:X)                                       | 1000.0     |
| Safety E                         | Cactor 2.0 Depression Storage (mm)                            | 5          |
| Por<br>Invert Leve               | cosity 0.30 Evaporation (mm/day)                              | 3          |
|                                  | er (m) 50.500 cap vorume bepch (m)                            | 0.000      |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
| ©1982-                           | 2015 XP Solutions                                             |            |

| RCD                          |                    | Page 9   |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamacje |
| Micro Drainage               | Network 2015.1     |          |
|                              |                    |          |

#### Summary of Results for 180 minute 2 year Winter (Storm)

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

| US/MH | Water<br>Level                                                   | Surcharged<br>Depth                                                                                                                                                                                                                                                         | Flooded<br>Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flow /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pipe<br>Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name  | (m)                                                              | (m)                                                                                                                                                                                                                                                                         | (m³)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cap.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1     | 50.058                                                           | -0.292                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2     | 50.058                                                           | -0.242                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3     | 50.057                                                           | -0.193                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4     | 50.057                                                           | -0.143                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5     | 50.056                                                           | -0.214                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6     | 50.056                                                           | -0.134                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7     | 50.055                                                           | -0.035                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8     | 49.856                                                           | -0.204                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9     | 49.855                                                           | -0.145                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10    | 49.854                                                           | -0.006                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | US/MH<br>Name<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | Water           Level           Name         South           1         50.058           2         50.057           3         50.057           4         50.056           5         50.056           6         50.055           8         49.855           10         49.855 | Water         Surcharged           Level         Depth           Name         0.000           1         50.058         -0.292           2         50.058         -0.242           3         50.057         -0.193           4         50.057         -0.143           5         50.056         -0.214           6         50.056         -0.134           7         50.055         -0.035           8         49.856         -0.204           9         49.855         -0.145           10         49.854         -0.006 | Water         Surcharged         Flooded           Lscvel         Depth         Volume           Name         50.058         -0.292         0.000           2         50.058         -0.242         0.000           3         50.057         -0.143         0.000           4         50.057         -0.143         0.000           5         50.056         -0.214         0.000           4         50.057         -0.143         0.000           5         50.056         -0.214         0.000           5         50.056         -0.134         0.000           5         50.055         -0.035         0.000           6         50.055         -0.035         0.000           7         50.055         -0.204         0.000           8         49.856         -0.204         0.000           9         49.855         -0.145         0.000           10         49.854         -0.006         0.000 | Water         Surcharged         Flooded           Us/MH         Level         Depth         Volume         Flow /<br>Cap.           1         50.058         -0.292         0.000         0.011           2         50.058         -0.242         0.000         0.033           3         50.057         -0.193         0.000         0.044           5         50.056         -0.214         0.000         0.022           4         50.056         -0.134         0.000         0.022           5         50.056         -0.134         0.000         0.022           6         50.055         -0.035         0.000         0.023           7         50.055         -0.035         0.000         0.022           7         50.055         -0.143         0.000         0.023           8         49.856         -0.204         0.000         0.023           9         49.855         -0.145         0.000         0.033           10         49.854         -0.006         0.000         0.011 | Water         Surcharged         Flooded           US/MH         Level         Depth         Volume         Flow /         Overflow           Name         (m)         (m)         (m <sup>3</sup> )         Cap.         (l/s)           1         50.058         -0.292         0.000         0.011           2         50.058         -0.242         0.000         0.03           3         50.057         -0.143         0.000         0.004           4         50.056         -0.214         0.000         0.02           5         50.056         -0.134         0.000         0.02           6         50.055         -0.035         0.000         0.02           7         50.055         -0.035         0.000         0.02           8         49.856         -0.214         0.000         0.02           9         49.855         -0.145         0.000         0.02           9         49.855         -0.145         0.000         0.02 | Water         Surcharged         Flooded         Flow         Overflow         Flow           US/MH         Level         Depth         Volume         Flow         Overflow         Flow           Name         (m)         (m)         (m <sup>3</sup> )         Cap.         (l/s)         1.4           2         50.058         -0.292         0.000         0.01         1.4           2         50.058         -0.242         0.000         0.03         3.8           3         50.057         -0.193         0.000         0.04         6.0           4         50.057         -0.143         0.000         0.02         6.5           5         50.056         -0.214         0.000         0.02         5.1           7         50.055         -0.035         0.000         0.03         4.9           8         49.856         -0.204         0.000         0.02         5.6           9         49.855         -0.145         0.000         0.02         5.6           9         49.855         -0.145         0.000         0.03         9.0           10         49.854         -0.006         0.000         0.01         5.0 |

| RCD       |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               |                 |             |                  |                 |                  |       | Pa              | ge 1         |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------|-------------|------------------|-----------------|------------------|-------|-----------------|--------------|
| 18 Deyley | y Way                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |               |                 | 112         | 9-1008-E         | ROPOSE          | ED               |       |                 |              |
| Singleton | n                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               |                 | CLA         | YGATE RC         | AD              |                  |       | 4               |              |
| Ashford   | TN23 5                                                                                                                                                                                                                                                                                                                                                                                                                                       | бНХ           |               |                 | COL         | LIER STF         | EET             |                  |       | N               | licco        |
| Date JAN  | Date JAN 2016 Designed by RAC                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |                 |             |                  |                 |                  |       | nciu<br>cainago |              |
| File 1129 | 9-1008-                                                                                                                                                                                                                                                                                                                                                                                                                                      | PROPOS        | ED 16         | 01              | Che         | cked by          |                 |                  |       |                 | Ialliage     |
| Micro Dra | ainage                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |               |                 | Net         | work 201         | 5.1             |                  |       | ·               |              |
|           | <u>ST</u>                                                                                                                                                                                                                                                                                                                                                                                                                                    | ORM SE        | WER D         | ESIGN           | by t        | he Modif         | fied Ra         | ational 1        | Metho | <u>1</u>        |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Ī             | Design          | <u>Crit</u> | <u>ceria fo</u>  | <u>r Stor</u>   | <u>°m</u>        |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              | P             | ipe Si        | zes ST          | ANDARI      | Manhole          | Sizes :         | STANDARD         |       |                 |              |
| Maximum T | FSR Rainfall Model - England and WalesReturn Period (years)2Add Flow / Climate Change (%)30M5-60 (mm)20.000Minimum Backdrop Height (m)0.000Ratio R0.350Maximum Backdrop Height (m)10.000Maximum Rainfall (mm/hr)50 Min Design Depth for Optimisation (m)1.200Maximum Time of Concentration (mins)30Min Vel for Auto Design only (m/s)1.00Foul Sewage (1/s/ha)0.000Min Slope for Optimisation (1:X)500Volumetric Runoff Coeff.0.7500.7500.000 |               |               |                 |             |                  |                 |                  |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               | Desigr          | ned wi      | th Level         | Inverts         |                  |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | ТÍ            | ime Ar          | rea Di      | lagram f         | or Sto          | rm               |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               |                 |             | -                |                 |                  |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Time<br>(mine | Area            | I Tim       | e Area           | Time            | Area             |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | (mins         | ) (na)          | (m11)       | is) (na)         | (mins)          | (na)             |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 0-            | 4 0.18          | 7 4         | -8 0.211         | 8-12            | 0.006            |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Tota          | al Area         | Contr       | ibuting          | (ha) = (        | 0.404            |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               |                 |             |                  | ()              |                  |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Т             | otal Pi         | ipe Vo      | lume (m³)        | = 66.5          | 86               |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Net           | work 1          | Desig       | n Table          | for St          | torm             |       |                 |              |
|           | DN                                                                                                                                                                                                                                                                                                                                                                                                                                           | Toneth        | <b>F</b> -11  | 01              | T . D       |                  | Deee            | . 1-             |       | DIA             |              |
|           | PN                                                                                                                                                                                                                                                                                                                                                                                                                                           | Length<br>(m) | raii<br>(m)   | (1:X)           | (ha)        | a T.E.<br>(mins) | Base<br>Flow (1 | е к<br>./s) (mm) | SECT  | (mm)            |              |
|           | 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                        | 05 000        | 0 0 5 0       | 500 0           | 0 00        |                  |                 | 0 0 0 000        |       | 450             |              |
|           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.000        | 0.050         | 400.0           | 0.02        | 5 5.00<br>6 0.00 |                 | 0.0 0.600        | 0     | 450<br>450      |              |
|           | 1.002                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.000        | 0.050         | 500.0           | 0.04        | 7 0.00           |                 | 0.0 0.600        | 0     | 450             |              |
|           | 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                        | 34.000        | 0.080         | 425.0           | 0.01        | 3 0.00           |                 | 0.0 0.600        | 0     | 450             |              |
|           | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36.000        | 0.080         | 450.0           | 0.04        | 3 0.00           |                 | 0.0 0.600        | 0     | 600             |              |
|           | 1.005                                                                                                                                                                                                                                                                                                                                                                                                                                        | 39.000        | 0.100         | 390.0           | 0.03        | 2 0.00           |                 | 0.0 0.600        | 0     | 600<br>600      |              |
|           | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.000        |               | 100.0           | 0.00        | 0.00             |                 | 0.0 0.000        | 0     | 000             |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               | <u>Netw</u>     | ork H       | Results          | <u>Table</u>    |                  |       |                 |              |
| PN        | Rain                                                                                                                                                                                                                                                                                                                                                                                                                                         | T.C.          | US/II         | ι ΣΙ.           | Area        | Σ Base           | Foul            | Add Flow         | Vel   | Cap             | Flow         |
|           | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                      | (mins)        | (m)           | (h              | a) I        | :10w (l/s)       | (1/s)           | (1/s)            | (m/s) | (1/s)           | (1/s)        |
| 1.000     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.46          | 49.90         | 0 0             | .025        | 0.0              | 0.0             | 1.0              | 0.90  | 143.5           | 4.4          |
| 1.001     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.79          | 49.85         | 0 0             | .071        | 0.0              | 0.0             | 2.9              | 1.01  | 160.7           | 12.5         |
| 1.002     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.25          | 49.80         | U 0             | .118        | 0.0              | 0.0             | 4.8              | 0.90  | 143.5           | 20.8         |
| 1.003     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.83          | 49.75         | U 0             | .131        | 0.0              | 0.0             | 5.3              | U.98  | 155.8           | 23.1         |
| 1.004     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.36          | 49.67         | 0 0             | .⊥/4<br>206 | 0.0              |                 | 7.1              | 1 22  | 322.7           | 30.6<br>36 3 |
| 1.005     | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.05          | 49.39         | 0 0             | .200        | 0.0              | 0.0             | 0.4<br>11.8      | 1.21  | 342.5           | 51.2         |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               | @1982           | -2015       | VP SOL           | utions          |                  |       |                 |              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |               | x - / x - · · / |             | / //             |                 |                  |       |                 |              |

| RCD                          |                    |          |  |  |  |
|------------------------------|--------------------|----------|--|--|--|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |  |  |  |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |  |  |  |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |  |  |  |
| Date JAN 2016                | Designed by RAC    |          |  |  |  |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |  |  |  |
| Micro Drainage               | Network 2015.1     | L        |  |  |  |

#### Network Design Table for Storm

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ise<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) |
|-------|---------------|-------------|----------------|----------------|----------------|------------|--------------|-----------|-------------|-------------|
| 1.007 | 28.000        | 0.060       | 466.7          | 0.020          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |
| 1.008 | 57.000        | 0.140       | 407.1          | 0.093          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |
| 1.009 | 5.000         | 0.050       | 100.0          | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |

#### <u>Network Results Table</u>

| PN    | Rain    | T.C.   | US/IL  | Σ I.Area | Σ Base     | Foul  | Add Flow | Vel   | Cap   | Flow  |
|-------|---------|--------|--------|----------|------------|-------|----------|-------|-------|-------|
|       | (mm/hr) | (mins) | (m)    | (ha)     | Flow (l/s) | (l/s) | (1/s)    | (m/s) | (l/s) | (l/s) |
| 1.007 | 50.00   | 8.47   | 49.460 | 0.311    | 0.0        | 0.0   | 12.6     | 1.12  | 316.8 | 54.7  |
| 1.008 | 49.51   | 9.26   | 49.400 | 0.404    | 0.0        | 0.0   | 16.3     | 1.20  | 339.5 | 70.4  |
| 1.009 | 49.42   | 9.29   | 49.260 | 0.404    | 0.0        | 0.0   | 16.3     | 2.44  | 688.6 | 70.4  |

| RCD                          |                    | Page 3   |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | L.       |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Dialiaye |
| Micro Drainage               | Network 2015.1     |          |

| Manhole | Schedules | for | Storm |  |
|---------|-----------|-----|-------|--|
|         |           |     |       |  |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| 1          | 51.000       | 1.100              | Open Manhole     | 1500                    | 1.000 | 49.900                          | 450              |       |                                 |                  |                  |
| 2          | 51.000       | 1.150              | Open Manhole     | 1500                    | 1.001 | 49.850                          | 450              | 1.000 | 49.850                          | 450              |                  |
| 3          | 51.000       | 1.200              | Open Manhole     | 1500                    | 1.002 | 49.800                          | 450              | 1.001 | 49.800                          | 450              |                  |
| 4          | 51.000       | 1.250              | Open Manhole     | 1500                    | 1.003 | 49.750                          | 450              | 1.002 | 49.750                          | 450              |                  |
| 5          | 51.000       | 1.330              | Open Manhole     | 1500                    | 1.004 | 49.670                          | 600              | 1.003 | 49.670                          | 450              |                  |
| 6          | 51.000       | 1.410              | Open Manhole     | 1500                    | 1.005 | 49.590                          | 600              | 1.004 | 49.590                          | 600              |                  |
| 7          | 51.000       | 1.510              | Open Manhole     | 1500                    | 1.006 | 49.490                          | 600              | 1.005 | 49.490                          | 600              |                  |
| 8          | 51.000       | 1.540              | Open Manhole     | 1500                    | 1.007 | 49.460                          | 600              | 1.006 | 49.460                          | 600              |                  |
| 9          | 51.000       | 1.600              | Open Manhole     | 1500                    | 1.008 | 49.400                          | 600              | 1.007 | 49.400                          | 600              |                  |
| 10         | 51.000       | 1.740              | Open Manhole     | 1500                    | 1.009 | 49.260                          | 600              | 1.008 | 49.260                          | 600              |                  |
|            | 51.000       | 1.790              | Open Manhole     | 450                     |       | OUTFALL                         |                  | 1.009 | 49.210                          | 600              |                  |

| RCD                          |                    | Page 4   |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |
| Micro Drainage               | Network 2015.1     |          |

#### PIPELINE SCHEDULES for Storm

#### <u>Upstream Manhole</u>

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1 000 | 0           | 450          | 1          | 51 000         | 49 900         | 0 650          | Open Manhole     | 1500                  |
| 1.001 | 0           | 450          | 2          | 51.000         | 49.850         | 0.700          | Open Manhole     | 1500                  |
| 1.002 | 0           | 450          | 3          | 51.000         | 49.800         | 0.750          | Open Manhole     | 1500                  |
| 1.003 | 0           | 450          | 4          | 51.000         | 49.750         | 0.800          | Open Manhole     | 1500                  |
| 1.004 | 0           | 600          | 5          | 51.000         | 49.670         | 0.730          | Open Manhole     | 1500                  |
| 1.005 | 0           | 600          | 6          | 51.000         | 49.590         | 0.810          | Open Manhole     | 1500                  |
| 1.006 | 0           | 600          | 7          | 51.000         | 49.490         | 0.910          | Open Manhole     | 1500                  |
| 1.007 | 0           | 600          | 8          | 51.000         | 49.460         | 0.940          | Open Manhole     | 1500                  |
| 1.008 | 0           | 600          | 9          | 51.000         | 49.400         | 1.000          | Open Manhole     | 1500                  |
| 1.009 | 0           | 600          | 10         | 51.000         | 49.260         | 1.140          | Open Manhole     | 1500                  |

#### Downstream Manhole

| PN    | Length | Slope | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|-------|--------|-------|------|---------|---------|---------|--------------|---------------|
|       | (m)    | (1:X) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
|       |        |       |      |         |         |         |              |               |
| 1.000 | 25.000 | 500.0 | 2    | 51.000  | 49.850  | 0.700   | Open Manhole | 1500          |
| 1.001 | 20.000 | 400.0 | 3    | 51.000  | 49.800  | 0.750   | Open Manhole | 1500          |
| 1.002 | 25.000 | 500.0 | 4    | 51.000  | 49.750  | 0.800   | Open Manhole | 1500          |
| 1.003 | 34.000 | 425.0 | 5    | 51.000  | 49.670  | 0.880   | Open Manhole | 1500          |
| 1.004 | 36.000 | 450.0 | 6    | 51.000  | 49.590  | 0.810   | Open Manhole | 1500          |
| 1.005 | 39.000 | 390.0 | 7    | 51.000  | 49.490  | 0.910   | Open Manhole | 1500          |
| 1.006 | 12.000 | 400.0 | 8    | 51.000  | 49.460  | 0.940   | Open Manhole | 1500          |
| 1.007 | 28.000 | 466.7 | 9    | 51.000  | 49.400  | 1.000   | Open Manhole | 1500          |
| 1.008 | 57.000 | 407.1 | 10   | 51.000  | 49.260  | 1.140   | Open Manhole | 1500          |
| 1.009 | 5.000  | 100.0 |      | 51.000  | 49.210  | 1.190   | Open Manhole | 450           |

Free Flowing Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.009 51.000 49.210 49.210 450 0

#### Simulation Criteria for Storm

Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 30.000 Hot Start (mins) 0 MADD Factor \* 10m<sup>3</sup>/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 360 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 3 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0

| RCD                          |                    | Page 5  |
|------------------------------|--------------------|---------|
| 18 Deyley Way                | 1129-1008-PROPOSED |         |
| Singleton                    | CLAYGATE ROAD      | 4       |
| Ashford TN23 5HX             | COLLIER STREET     | Micco   |
| Date JAN 2016                | Designed by RAC    |         |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye |
| Micro Drainage               | Network 2015.1     | ·       |

#### Simulation Criteria for Storm

#### <u>Synthetic Rainfall Details</u>

| Rainfall Model        | FSR               | Profile Type          | Winter |
|-----------------------|-------------------|-----------------------|--------|
| Return Period (years) | 30                | Cv (Summer)           | 0.750  |
| Region                | England and Wales | Cv (Winter)           | 0.840  |
| M5-60 (mm)            | 20.000            | Storm Duration (mins) | 180    |
| Ratio R               | 0.350             |                       |        |

| BCD                                                                                                            |                                                          |                                             |                                          |                                  | Page 6                                |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------|---------------------------------------|
|                                                                                                                | 1129-100                                                 |                                             | סי                                       |                                  | rage o                                |
| I Deyrey Way                                                                                                   | 1129-100                                                 | DO-FROFOSE                                  | U<br>U                                   |                                  |                                       |
| Singleton                                                                                                      | CLAYGAT                                                  | S ROAD                                      |                                          |                                  | m m                                   |
| Ashford TN23 5HX                                                                                               | COLLIER                                                  | STREET                                      |                                          |                                  | Mirro                                 |
| Date JAN 2016                                                                                                  | Designed                                                 | d by RAC                                    |                                          |                                  | Desinado                              |
| File 1129-1008-PROPOSED 16                                                                                     | 01 Checked                                               | by                                          |                                          |                                  | Diamaye                               |
| Micro Drainage                                                                                                 | Network                                                  | 2015.1                                      |                                          |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| <u></u>                                                                                                        | nline Controls                                           | for Stor                                    | m                                        |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| <u>Hydro-Brake Optimum®</u>                                                                                    | Manhole: 7, D                                            | S/PN: 1.00                                  | 06, Volum                                | e (m³):                          | 13.3                                  |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                | Unit Reference                                           | MD-SHE-01                                   | 05-5000-100                              | 0-5000                           |                                       |
|                                                                                                                | Design Head (m)                                          |                                             |                                          | 1.000                            |                                       |
|                                                                                                                | Design Flow (l/s)                                        |                                             | ~ 1                                      | 5.0                              |                                       |
|                                                                                                                | Flush-Flom                                               | . Minimiaa                                  | Calc                                     | ulated                           |                                       |
|                                                                                                                | Diameter (mm)                                            | MINIMISE                                    | upstream s                               | 105                              |                                       |
|                                                                                                                | Invert Level (m)                                         |                                             |                                          | 49.490                           |                                       |
| Minimum Outlet P                                                                                               | ipe Diameter (mm)                                        |                                             |                                          | 150                              |                                       |
| Suggested Manh                                                                                                 | ole Diameter (mm)                                        |                                             |                                          | 1200                             |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| Con                                                                                                            | trol Points                                              | Head (m) F                                  | 'low (l/s)                               |                                  |                                       |
| Design Po                                                                                                      | oint (Calculated)                                        | 1.000                                       | 5.0                                      |                                  |                                       |
|                                                                                                                | Flush-Flo™                                               | 0.295                                       | 4.9                                      |                                  |                                       |
|                                                                                                                | Kick-Flo®                                                | 0.636                                       | 4.0                                      |                                  |                                       |
| Mean Flow                                                                                                      | v over Head Range                                        | -                                           | 4.3                                      |                                  |                                       |
| The hydrological calculations<br>Hydro-Brake Optimum® as speci<br>Hydro-Brake Optimum® be utili<br>invalidated | nave been based<br>fied. Should and<br>sed then these st | on the Head<br>other type d<br>corage routi | d/Discharge<br>of control<br>ing calcula | relation<br>device o<br>tions wi | nsnip for the<br>ther than a<br>ll be |
| Depth (m) Flow (l/s) Depth (                                                                                   | m) Flow (l/s) De                                         | pth (m) Flo                                 | w (l/s) De                               | pth (m)                          | Flow (l/s)                            |
| 0.100 3.6 1.2                                                                                                  | 00 5.4                                                   | 3.000                                       | 8.3                                      | 7.000                            | 12.4                                  |
| 0.200 4.8 1.4                                                                                                  | 00 5.8                                                   | 3.500                                       | 8.9                                      | 7.500                            | 12.8                                  |
| 0.300 4.9 1.6                                                                                                  | 6.2                                                      | 4.000                                       | 9.5                                      | 8.000                            | 13.2                                  |
| 0.400 4.9 1.8                                                                                                  | 00 6.5                                                   | 4.500                                       | 10.1                                     | 8.500                            | 13.6                                  |
| 0.500 4.7 2.0                                                                                                  | 00 6.9                                                   | 5.000                                       | 10.6                                     | 9.000                            | 14.0                                  |
| 0.600 4.3 2.2                                                                                                  | 00 7.2                                                   | 5.500                                       | 11.1                                     | 9.500                            | 14.4                                  |
|                                                                                                                | 00 7.5                                                   | 6.000                                       | 12.0                                     |                                  |                                       |
| 1.000 5.0 2.8                                                                                                  | /.8                                                      | 6.500                                       | 12.0                                     |                                  |                                       |
| <u>Hydro-Brake Optimum®</u>                                                                                    | Manhole: 10, D                                           | S/PN: 1.0                                   | 09, Volum                                | ne (m³):                         | : 18.8                                |
|                                                                                                                | Unit Reference                                           | MD-SHE-010                                  | 0-5000-135                               | 0-5000                           |                                       |
|                                                                                                                | Design Head (m)                                          | , 110 0110 010                              | T                                        | 1.350                            |                                       |
|                                                                                                                | Design Flow (1/s)                                        |                                             |                                          | 5.0                              |                                       |
|                                                                                                                | Flush-Flo <sup>m</sup>                                   | 4                                           | Calc                                     | ulated                           |                                       |
|                                                                                                                | Objective                                                | e Minimise                                  | upstream s                               | torage                           |                                       |
|                                                                                                                | Diameter (mm)                                            |                                             |                                          | 100                              |                                       |
|                                                                                                                | Invert Level (m)                                         |                                             |                                          | 49.260                           |                                       |
| Minimum Outlet P<br>Suggested Maph                                                                             | ipe Diameter (mm)<br>ole Diameter (mm)                   |                                             |                                          | 1200                             |                                       |
| Suggested Malli                                                                                                | ore prameter (nun)                                       |                                             |                                          | 1200                             |                                       |
| Con                                                                                                            | trol Points                                              | Head (m) F                                  | 'low (l/s)                               |                                  |                                       |
| Desian Pa                                                                                                      | oint (Calculated)                                        | 1.350                                       | 5.0                                      |                                  |                                       |
|                                                                                                                | Flush-Flo™                                               | 0.401                                       | 5.0                                      |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                | 01002_2015 VD                                            | Solutions                                   |                                          |                                  |                                       |
|                                                                                                                | WI JOZ Z / U I I AP                                      | DUTUE                                       |                                          |                                  |                                       |

| RCD                                                                                  |                                                     |                                             |                               |                                             |                                       | Page 7                                   |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------|
| 18 Deyley Way                                                                        |                                                     | 1129-1008                                   | -PROP                         | OSED                                        |                                       |                                          |
| Singleton                                                                            |                                                     | CLAYGATE                                    | ROAD                          |                                             |                                       | 4                                        |
| Ashford TN23 5HX                                                                     |                                                     | COLLIER S                                   | TREET                         |                                             |                                       | Micco                                    |
| Date JAN 2016                                                                        |                                                     | Designed                                    | by RA                         | .C                                          |                                       |                                          |
| File 1129-1008-PROPC                                                                 | DSED 1601                                           | Checked b                                   | у                             |                                             |                                       | Diamaye                                  |
| Micro Drainage                                                                       |                                                     | Network 2                                   | 015.1                         |                                             |                                       |                                          |
| <u>Hydro-Brake Op</u>                                                                | timum® Manhol                                       | le: 10, DS                                  | /PN:                          | 1.009, Vol                                  | Lume (m³)                             | : 18.8                                   |
|                                                                                      | Control Po                                          | ints H                                      | lead (m                       | n) Flow (l/s                                | )                                     |                                          |
| М                                                                                    | Mean Flow over H                                    | Kick-Flo®<br>Head Range                     | 0.82                          | - 4.                                        | 0<br>4                                |                                          |
| The hydrological calc<br>Hydro-Brake Optimum®<br>Hydro-Brake Optimum®<br>invalidated | ulations have b<br>as specified.<br>be utilised the | peen based o<br>Should anot<br>en these sto | n the l<br>her tyj<br>rage ro | Head/Discha<br>pe of contro<br>puting calco | rge relati<br>ol device<br>ılations w | onship for the<br>other than a<br>ill be |
| Depth (m) Flow (l/s)                                                                 | Depth (m) Flow                                      | w (l/s) Dept                                | :h (m)                        | Flow (l/s)                                  | Depth (m)                             | Flow (l/s)                               |
| 0.100 3.3                                                                            | 1.200                                               | 4.7                                         | 3.000                         | 7.3                                         | 7.000                                 | 10.8                                     |
| 0.200 4.6                                                                            | 1.400                                               | 5.1                                         | 3.500                         | 7.8                                         | 7.500                                 | 11.2                                     |
| 0.300 4.9                                                                            | 1.600                                               | 5.4                                         | 4.000                         | 8.3                                         | 8.000                                 | 11.6                                     |
| 0.400 5.0                                                                            | 2 000                                               | 5.7                                         | 4.500                         | 8.8                                         | 9 000                                 | 11.9                                     |
| 0.600 4.8                                                                            | 2.200                                               | 6.3                                         | 5.500                         | 9.7                                         | 9.500                                 | 12.5                                     |
| 0.800 4.1                                                                            | 2.400                                               | 6.5                                         | 6.000                         | 10.1                                        |                                       | 1210                                     |
| 1.000 4.3                                                                            | 2.600                                               | 6.8                                         | 6.500                         | 10.5                                        |                                       |                                          |
|                                                                                      |                                                     |                                             |                               |                                             |                                       |                                          |

| RCD                              |                                                               | Page 8     |
|----------------------------------|---------------------------------------------------------------|------------|
| 18 Deyley Way                    | 1129-1008-PROPOSED                                            |            |
| Singleton                        | CLAYGATE ROAD                                                 | L'         |
| Ashford TN23 5HX                 | COLLIER STREET                                                | Micco      |
| Date JAN 2016                    | Designed by RAC                                               |            |
| File 1129-1008-PROPOSED 1601     | Checked by                                                    | Diamaye    |
| Micro Drainage                   | Network 2015.1                                                |            |
| <u>Storage</u>                   | Structures for Storm                                          |            |
| Porous Car Par                   | <u>k Manhole: 3, DS/PN: 1.002</u>                             |            |
| Infiltration Coefficient Base    | 'm/hr) 0.00000 Width (m)                                      | 10.0       |
| Membrane Percolation (m          | m/hr) 1000 Length (m)                                         | 34.0       |
| Max Percolation                  | (1/s) 94.4 Slope (1:X)                                        | 1000.0     |
| Safety H                         | Cactor 2.0 Depression Storage (mm)                            | 5          |
| Invert Leve                      | el (m) 50.500 Cap Volume Depth (m)                            | 3<br>0.000 |
|                                  |                                                               |            |
| <u>Tank or Pond</u>              | Manhole: 5, DS/PN: 1.004                                      |            |
| Inver                            | rt Level (m) 50.000                                           |            |
| Depth (m) Are                    | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> )         |            |
| 0.000                            | 40.0   1.000 100.0                                            |            |
| Porous Car Par                   | <u>k Manhole: 7, DS/PN: 1.006</u>                             |            |
| Infiltration Coefficient Base (  | (m/hr) 0.00000 Width (m)                                      | 5.0        |
| Membrane Percolation (m          | m/hr) 1000 Length (m)                                         | 120.0      |
| Max Percolation<br>Safety F      | (1/5) 100.7 Slope (1:X)<br>Pactor 2.0 Depression Storage (mm) | 1000.0     |
| Por                              | cosity 0.30 Evaporation (mm/day)                              | 3          |
| Invert Leve                      | el (m) 50.500 Cap Volume Depth (m)                            | 0.000      |
| Porous Car Park                  | Manhole: 10, DS/PN: 1.009                                     |            |
| Infiltration Coofficient Deserve | (m/br) 0 00000 [1]:                                           | 5 0        |
| Membrane Percolation (m          | m/hr) = 1000 Length (m)                                       | 92.0       |
| Max Percolation                  | (l/s) 127.8 Slope (1:X)                                       | 1000.0     |
| Safety E                         | Cactor 2.0 Depression Storage (mm)                            | 5          |
| Por<br>Invert Leve               | cosity 0.30 Evaporation (mm/day)                              | 3          |
|                                  | er (m) 50.500 cap vorume bepch (m)                            | 0.000      |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
| ©1982-                           | 2015 XP Solutions                                             |            |

| RCD                          | Page 9             |          |  |  |  |
|------------------------------|--------------------|----------|--|--|--|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |  |  |  |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |  |  |  |
| Ashford TN23 5HX             | COLLIER STREET     | Micro    |  |  |  |
| Date JAN 2016                | Designed by RAC    |          |  |  |  |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |  |  |  |
| Micro Drainage               | Network 2015.1     |          |  |  |  |

#### Summary of Results for 180 minute 30 year Winter (Storm)

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

|       | US/MH | Water<br>Level | Surcharged<br>Depth | Flooded<br>Volume | Flow / | Overflow | Pipe<br>Flow |            |
|-------|-------|----------------|---------------------|-------------------|--------|----------|--------------|------------|
| PN    | Name  | (m)            | (m)                 | (m³)              | Cap.   | (1/s)    | (1/s)        | Status     |
| 1.000 | 1     | 50.598         | 0.248               | 0.000             | 0.02   |          | 2.4          | SURCHARGED |
| 1.001 | 2     | 50.599         | 0.299               | 0.000             | 0.05   |          | 6.5          | SURCHARGED |
| 1.002 | 3     | 50.599         | 0.349               | 0.000             | 0.08   |          | 9.5          | SURCHARGED |
| 1.003 | 4     | 50.598         | 0.398               | 0.000             | 0.06   |          | 8.7          | SURCHARGED |
| 1.004 | 5     | 50.597         | 0.327               | 0.000             | 0.14   |          | 38.1         | SURCHARGED |
| 1.005 | 6     | 50.597         | 0.407               | 0.000             | 0.07   |          | 19.4         | SURCHARGED |
| 1.006 | 7     | 50.597         | 0.507               | 0.000             | 0.03   |          | 4.9          | SURCHARGED |
| 1.007 | 8     | 50.540         | 0.480               | 0.000             | 0.02   |          | 5.6          | SURCHARGED |
| 1.008 | 9     | 50.540         | 0.540               | 0.000             | 0.04   |          | 11.2         | SURCHARGED |
| 1.009 | 10    | 50.538         | 0.678               | 0.000             | 0.01   |          | 5.0          | SURCHARGED |

| RCD                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               |             |             |                  |                 |                  |       | Pa         | ge 1            |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-------------|-------------|------------------|-----------------|------------------|-------|------------|-----------------|--|
| 18 Deyley                   | y Way                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |               |             | 112         | 9-1008-E         | ROPOSE          | ED               |       |            |                 |  |
| Singleton                   | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |               |             | CLA         | YGATE RC         | AD              |                  |       | 4          |                 |  |
| Ashford                     | TN23 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | бНХ           |               |             | COL         | LIER STF         | EET             |                  |       | N          | licco           |  |
| Date JAN                    | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |               |             | Des         | igned by         | RAC             |                  |       |            | nciu<br>cainago |  |
| File 1129                   | 9-1008-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PROPOS        | ED 16         | 01          | Che         | cked by          |                 |                  |       |            | Ialliage        |  |
| Micro Dra                   | ainage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |               |             | Net         | work 201         | 5.1             |                  |       | ·          |                 |  |
|                             | <u>ST</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ORM SE        | WER D         | ESIGN       | by t        | he Modif         | fied Ra         | ational 1        | Metho | <u>1</u>   |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Ī             | Design      | <u>Crit</u> | <u>ceria fo</u>  | <u>r Stor</u>   | <u>°m</u>        |       |            |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P             | ipe Si        | zes ST      | ANDARI      | Manhole          | Sizes :         | STANDARD         |       |            |                 |  |
| Maximum T                   | FSR Rainfall Model - England and Wales         Return Period (years)       2       Add Flow / Climate Change (%)       30         M5-60 (mm)       20.000       Minimum Backdrop Height (m)       0.000         Ratio R       0.350       Maximum Backdrop Height (m)       10.000         Maximum Rainfall (mm/hr)       50       Min Design Depth for Optimisation (m)       1.200         Maximum Time of Concentration (mins)       30       Min Vel for Auto Design only (m/s)       1.00         Foul Sewage (1/s/ha)       0.000       Min Slope for Optimisation (1:X)       500         Volumetric Runoff Coeff.       0.750       1.00 |               |               |             |             |                  |                 |                  |       |            |                 |  |
|                             | Designed with Level Inverts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |             |             |                  |                 |                  |       |            |                 |  |
| Time Area Diagram for Storm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               |             |             |                  |                 |                  |       |            |                 |  |
|                             | TIME ATEA DIAGIAM IOI DEDIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |               |             |             |                  |                 |                  |       |            |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Time<br>(mine | Area        | I Tim       | e Area           | Time            | Area             |       |            |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | (mins         | ) (na)      | (m11)       | is) (na)         | (mins)          | (na)             |       |            |                 |  |
|                             | 0-4 0.187 4-8 0.211 8-12 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |               |             |             |                  |                 |                  |       |            |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Tota          | al Area     | Contr       | ibuting          | (ha) = (        | 0.404            |       |            |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               |             |             |                  | ()              |                  |       |            |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Т             | otal Pi     | ipe Vo      | lume (m³)        | = 66.5          | 86               |       |            |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Net           | work 1      | Desig       | n Table          | for St          | torm             |       |            |                 |  |
|                             | DN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Toneth        | <b>F</b> -11  | 01          | T . D       |                  | Deee            | . 1-             |       | DIA        |                 |  |
|                             | PN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Length<br>(m) | raii<br>(m)   | (1:X)       | (ha)        | a T.E.<br>(mins) | Base<br>Flow (1 | е к<br>./s) (mm) | SECT  | (mm)       |                 |  |
|                             | 1 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 05 000        | 0 0 5 0       | 500 0       | 0 00        |                  |                 | 0 0 0 000        |       | 450        |                 |  |
|                             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.000        | 0.050         | 400.0       | 0.02        | 5 5.00<br>6 0.00 |                 | 0.0 0.600        | 0     | 450<br>450 |                 |  |
|                             | 1.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.000        | 0.050         | 500.0       | 0.04        | 7 0.00           |                 | 0.0 0.600        | 0     | 450        |                 |  |
|                             | 1.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 34.000        | 0.080         | 425.0       | 0.01        | 3 0.00           |                 | 0.0 0.600        | 0     | 450        |                 |  |
|                             | 1.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.000        | 0.080         | 450.0       | 0.04        | 3 0.00           |                 | 0.0 0.600        | 0     | 600        |                 |  |
|                             | 1.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.000        | 0.100         | 390.0       | 0.03        | 2 0.00           |                 | 0.0 0.600        | 0     | 600<br>600 |                 |  |
|                             | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.000        |               | 100.0       | 0.00        | 0.00             |                 | 0.0 0.000        | 0     | 000        |                 |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               | <u>Netw</u> | ork H       | Results          | <u>Table</u>    |                  |       |            |                 |  |
| PN                          | Rain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T.C.          | US/II         | ι ΣΙ.       | Area        | Σ Base           | Foul            | Add Flow         | Vel   | Cap        | Flow            |  |
|                             | (mm/hr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (mins)        | (m)           | (h          | a) I        | :10w (l/s)       | (1/s)           | (1/s)            | (m/s) | (1/s)      | (1/s)           |  |
| 1.000                       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.46          | 49.90         | 0 0         | .025        | 0.0              | 0.0             | 1.0              | 0.90  | 143.5      | 4.4             |  |
| 1.001                       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.79          | 49.85         | 0 0         | .071        | 0.0              | 0.0             | 2.9              | 1.01  | 160.7      | 12.5            |  |
| 1.002                       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.25          | 49.80         | U 0         | .118        | 0.0              | 0.0             | 4.8              | 0.90  | 143.5      | 20.8            |  |
| 1.003                       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.83          | 49.75         | U 0         | .131        | 0.0              | 0.0             | 5.3              | 0.98  | 155.8      | 23.1            |  |
| 1.004                       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.36          | 49.67         | 0 0         | .⊥/4<br>206 | 0.0              |                 | 7.1              | 1 22  | 322.7      | 30.6<br>36 3    |  |
| 1.005                       | 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.05          | 49.39         | 0 0         | .200        | 0.0              | 0.0             | 0.4<br>11.8      | 1.21  | 342.5      | 51.2            |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               | @1982       | -2015       | VP SOL           | utions          |                  |       |            |                 |  |
| ©1982-2015 XP Solutions     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |               |             |             |                  |                 |                  |       |            |                 |  |

| RCD                          |                    | Page 2   |  |  |  |
|------------------------------|--------------------|----------|--|--|--|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |  |  |  |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |  |  |  |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |  |  |  |
| Date JAN 2016                | Designed by RAC    |          |  |  |  |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |  |  |  |
| Micro Drainage               | Network 2015.1     | L        |  |  |  |

#### Network Design Table for Storm

| PN    | Length<br>(m) | Fall<br>(m) | Slope<br>(1:X) | I.Area<br>(ha) | T.E.<br>(mins) | Ba<br>Flow | ise<br>(l/s) | k<br>(mm) | HYD<br>SECT | DIA<br>(mm) |
|-------|---------------|-------------|----------------|----------------|----------------|------------|--------------|-----------|-------------|-------------|
| 1.007 | 28.000        | 0.060       | 466.7          | 0.020          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |
| 1.008 | 57.000        | 0.140       | 407.1          | 0.093          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |
| 1.009 | 5.000         | 0.050       | 100.0          | 0.000          | 0.00           |            | 0.0          | 0.600     | 0           | 600         |

#### <u>Network Results Table</u>

| PN    | Rain    | T.C.   | US/IL  | Σ I.Area | Σ Base     | Foul  | Add Flow | Vel   | Cap   | Flow  |
|-------|---------|--------|--------|----------|------------|-------|----------|-------|-------|-------|
|       | (mm/hr) | (mins) | (m)    | (ha)     | Flow (l/s) | (l/s) | (1/s)    | (m/s) | (l/s) | (l/s) |
| 1.007 | 50.00   | 8.47   | 49.460 | 0.311    | 0.0        | 0.0   | 12.6     | 1.12  | 316.8 | 54.7  |
| 1.008 | 49.51   | 9.26   | 49.400 | 0.404    | 0.0        | 0.0   | 16.3     | 1.20  | 339.5 | 70.4  |
| 1.009 | 49.42   | 9.29   | 49.260 | 0.404    | 0.0        | 0.0   | 16.3     | 2.44  | 688.6 | 70.4  |

| RCD                          | Page 3             |          |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | L.       |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Dialiaye |
| Micro Drainage               | Network 2015.1     |          |

| Manhole | Schedules | for | Storm |  |
|---------|-----------|-----|-------|--|
|         |           |     |       |  |

| MH<br>Name | MH<br>CL (m) | MH<br>Depth<br>(m) | MH<br>Connection | MH<br>Diam.,L*W<br>(mm) | PN    | Pipe Out<br>Invert<br>Level (m) | Diameter<br>(mm) | PN    | Pipes In<br>Invert<br>Level (m) | Diameter<br>(mm) | Backdrop<br>(mm) |
|------------|--------------|--------------------|------------------|-------------------------|-------|---------------------------------|------------------|-------|---------------------------------|------------------|------------------|
| 1          | 51.000       | 1.100              | Open Manhole     | 1500                    | 1.000 | 49.900                          | 450              |       |                                 |                  |                  |
| 2          | 51.000       | 1.150              | Open Manhole     | 1500                    | 1.001 | 49.850                          | 450              | 1.000 | 49.850                          | 450              |                  |
| 3          | 51.000       | 1.200              | Open Manhole     | 1500                    | 1.002 | 49.800                          | 450              | 1.001 | 49.800                          | 450              |                  |
| 4          | 51.000       | 1.250              | Open Manhole     | 1500                    | 1.003 | 49.750                          | 450              | 1.002 | 49.750                          | 450              |                  |
| 5          | 51.000       | 1.330              | Open Manhole     | 1500                    | 1.004 | 49.670                          | 600              | 1.003 | 49.670                          | 450              |                  |
| 6          | 51.000       | 1.410              | Open Manhole     | 1500                    | 1.005 | 49.590                          | 600              | 1.004 | 49.590                          | 600              |                  |
| 7          | 51.000       | 1.510              | Open Manhole     | 1500                    | 1.006 | 49.490                          | 600              | 1.005 | 49.490                          | 600              |                  |
| 8          | 51.000       | 1.540              | Open Manhole     | 1500                    | 1.007 | 49.460                          | 600              | 1.006 | 49.460                          | 600              |                  |
| 9          | 51.000       | 1.600              | Open Manhole     | 1500                    | 1.008 | 49.400                          | 600              | 1.007 | 49.400                          | 600              |                  |
| 10         | 51.000       | 1.740              | Open Manhole     | 1500                    | 1.009 | 49.260                          | 600              | 1.008 | 49.260                          | 600              |                  |
|            | 51.000       | 1.790              | Open Manhole     | 450                     |       | OUTFALL                         |                  | 1.009 | 49.210                          | 600              |                  |

| RCD                          |                    |          |  |  |  |
|------------------------------|--------------------|----------|--|--|--|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |  |  |  |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |  |  |  |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |  |  |  |
| Date JAN 2016                | Designed by RAC    |          |  |  |  |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |  |  |  |
| Micro Drainage               | Network 2015.1     |          |  |  |  |

#### PIPELINE SCHEDULES for Storm

#### <u>Upstream Manhole</u>

| PN    | Hyd<br>Sect | Diam<br>(mm) | MH<br>Name | C.Level<br>(m) | I.Level<br>(m) | D.Depth<br>(m) | MH<br>Connection | MH DIAM., L*W<br>(mm) |
|-------|-------------|--------------|------------|----------------|----------------|----------------|------------------|-----------------------|
| 1 000 | 0           | 450          | 1          | 51 000         | 49 900         | 0 650          | Open Manhole     | 1500                  |
| 1.001 | 0           | 450          | 2          | 51.000         | 49.850         | 0.700          | Open Manhole     | 1500                  |
| 1.002 | 0           | 450          | 3          | 51.000         | 49.800         | 0.750          | Open Manhole     | 1500                  |
| 1.003 | 0           | 450          | 4          | 51.000         | 49.750         | 0.800          | Open Manhole     | 1500                  |
| 1.004 | 0           | 600          | 5          | 51.000         | 49.670         | 0.730          | Open Manhole     | 1500                  |
| 1.005 | 0           | 600          | 6          | 51.000         | 49.590         | 0.810          | Open Manhole     | 1500                  |
| 1.006 | 0           | 600          | 7          | 51.000         | 49.490         | 0.910          | Open Manhole     | 1500                  |
| 1.007 | 0           | 600          | 8          | 51.000         | 49.460         | 0.940          | Open Manhole     | 1500                  |
| 1.008 | 0           | 600          | 9          | 51.000         | 49.400         | 1.000          | Open Manhole     | 1500                  |
| 1.009 | 0           | 600          | 10         | 51.000         | 49.260         | 1.140          | Open Manhole     | 1500                  |

#### Downstream Manhole

| PN    | Length | Slope | MH   | C.Level | I.Level | D.Depth | MH           | MH DIAM., L*W |
|-------|--------|-------|------|---------|---------|---------|--------------|---------------|
|       | (m)    | (1:X) | Name | (m)     | (m)     | (m)     | Connection   | (mm)          |
|       |        |       |      |         |         |         |              |               |
| 1.000 | 25.000 | 500.0 | 2    | 51.000  | 49.850  | 0.700   | Open Manhole | 1500          |
| 1.001 | 20.000 | 400.0 | 3    | 51.000  | 49.800  | 0.750   | Open Manhole | 1500          |
| 1.002 | 25.000 | 500.0 | 4    | 51.000  | 49.750  | 0.800   | Open Manhole | 1500          |
| 1.003 | 34.000 | 425.0 | 5    | 51.000  | 49.670  | 0.880   | Open Manhole | 1500          |
| 1.004 | 36.000 | 450.0 | 6    | 51.000  | 49.590  | 0.810   | Open Manhole | 1500          |
| 1.005 | 39.000 | 390.0 | 7    | 51.000  | 49.490  | 0.910   | Open Manhole | 1500          |
| 1.006 | 12.000 | 400.0 | 8    | 51.000  | 49.460  | 0.940   | Open Manhole | 1500          |
| 1.007 | 28.000 | 466.7 | 9    | 51.000  | 49.400  | 1.000   | Open Manhole | 1500          |
| 1.008 | 57.000 | 407.1 | 10   | 51.000  | 49.260  | 1.140   | Open Manhole | 1500          |
| 1.009 | 5.000  | 100.0 |      | 51.000  | 49.210  | 1.190   | Open Manhole | 450           |

Free Flowing Outfall Details for Storm

Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m)

1.009 51.000 49.210 49.210 450 0

#### Simulation Criteria for Storm

Volumetric Runoff Coeff 0.840 Foul Sewage per hectare (1/s) 0.000 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 30.000 Hot Start (mins) 0 MADD Factor \* 10m<sup>3</sup>/ha Storage 2.000 Hot Start Level (mm) 0 Run Time (mins) 360 Manhole Headloss Coeff (Global) 0.500 Output Interval (mins) 3 Number of Input Hydrographs 0 Number of Storage Structures 4 Number of Online Controls 2 Number of Time/Area Diagrams 0 Number of Offline Controls 0

| RCD                          |                    |         |  |  |
|------------------------------|--------------------|---------|--|--|
| 18 Deyley Way                | 1129-1008-PROPOSED |         |  |  |
| Singleton                    | CLAYGATE ROAD      | L'      |  |  |
| Ashford TN23 5HX             | COLLIER STREET     | Micco   |  |  |
| Date JAN 2016                | Designed by RAC    |         |  |  |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye |  |  |
| Micro Drainage               | Network 2015.1     | ·       |  |  |

#### Simulation Criteria for Storm

#### Synthetic Rainfall Details

| Rainfall Model        |         | FSR       |       | Prof    | ile Type | Winter |
|-----------------------|---------|-----------|-------|---------|----------|--------|
| Return Period (years) |         | 100       |       | Cv      | (Summer) | 0.750  |
| Region                | England | and Wales |       | Cv      | (Winter) | 0.840  |
| M5-60 (mm)            |         | 20.000    | Storm | Duratio | n (mins) | 180    |
| Ratio R               |         | 0.350     |       |         |          |        |

| BCD                                                                                                            |                                                          |                                             |                                          |                                  | Page 6                                |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|------------------------------------------|----------------------------------|---------------------------------------|
|                                                                                                                | 1129-100                                                 |                                             | סי                                       |                                  | rage o                                |
| I Deyrey Way                                                                                                   | 1129-100                                                 | DO-FROFOSE                                  | U<br>U                                   |                                  |                                       |
| Singleton                                                                                                      | CLAYGAT                                                  | S ROAD                                      |                                          |                                  | m m                                   |
| Ashford TN23 5HX                                                                                               | COLLIER                                                  | STREET                                      |                                          |                                  | Mirro                                 |
| Date JAN 2016                                                                                                  | Designed                                                 | d by RAC                                    |                                          |                                  | Desinado                              |
| File 1129-1008-PROPOSED 16                                                                                     | 01 Checked                                               | by                                          |                                          |                                  | Diamaye                               |
| Micro Drainage                                                                                                 | Network                                                  | 2015.1                                      |                                          |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| <u></u>                                                                                                        | nline Controls                                           | for Stor                                    | m                                        |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| <u>Hydro-Brake Optimum®</u>                                                                                    | Manhole: 7, D                                            | S/PN: 1.00                                  | 06, Volum                                | e (m³):                          | 13.3                                  |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                | Unit Reference                                           | MD-SHE-01                                   | 05-5000-100                              | 0-5000                           |                                       |
|                                                                                                                | Design Head (m)                                          |                                             |                                          | 1.000                            |                                       |
|                                                                                                                | Design Flow (l/s)                                        |                                             | ~ 1                                      | 5.0                              |                                       |
|                                                                                                                | Flush-Flom                                               | . Minimiaa                                  | Calc                                     | ulated                           |                                       |
|                                                                                                                | Diameter (mm)                                            | MINIMISE                                    | upstream s                               | 105                              |                                       |
|                                                                                                                | Invert Level (m)                                         |                                             |                                          | 49.490                           |                                       |
| Minimum Outlet P                                                                                               | ipe Diameter (mm)                                        |                                             |                                          | 150                              |                                       |
| Suggested Manh                                                                                                 | ole Diameter (mm)                                        |                                             |                                          | 1200                             |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
| Con                                                                                                            | trol Points                                              | Head (m) F                                  | 'low (l/s)                               |                                  |                                       |
| Design Po                                                                                                      | oint (Calculated)                                        | 1.000                                       | 5.0                                      |                                  |                                       |
|                                                                                                                | Flush-Flo™                                               | 0.295                                       | 4.9                                      |                                  |                                       |
|                                                                                                                | Kick-Flo®                                                | 0.636                                       | 4.0                                      |                                  |                                       |
| Mean Flow                                                                                                      | v over Head Range                                        | -                                           | 4.3                                      |                                  |                                       |
| The hydrological calculations<br>Hydro-Brake Optimum® as speci<br>Hydro-Brake Optimum® be utili<br>invalidated | nave been based<br>fied. Should and<br>sed then these st | on the Head<br>other type d<br>corage routi | d/Discharge<br>of control<br>ing calcula | relation<br>device o<br>tions wi | nsnip for the<br>ther than a<br>ll be |
| Depth (m) Flow (l/s) Depth (                                                                                   | m) Flow (l/s) De                                         | pth (m) Flo                                 | w (l/s) De                               | pth (m)                          | Flow (l/s)                            |
| 0.100 3.6 1.2                                                                                                  | 00 5.4                                                   | 3.000                                       | 8.3                                      | 7.000                            | 12.4                                  |
| 0.200 4.8 1.4                                                                                                  | 00 5.8                                                   | 3.500                                       | 8.9                                      | 7.500                            | 12.8                                  |
| 0.300 4.9 1.6                                                                                                  | 6.2                                                      | 4.000                                       | 9.5                                      | 8.000                            | 13.2                                  |
| 0.400 4.9 1.8                                                                                                  | 00 6.5                                                   | 4.500                                       | 10.1                                     | 8.500                            | 13.6                                  |
| 0.500 4.7 2.0                                                                                                  | 00 6.9                                                   | 5.000                                       | 10.6                                     | 9.000                            | 14.0                                  |
| 0.600 4.3 2.2                                                                                                  | 00 7.2                                                   | 5.500                                       | 11.1                                     | 9.500                            | 14.4                                  |
|                                                                                                                | 00 7.5                                                   | 6.000                                       | 12.0                                     |                                  |                                       |
| 1.000 5.0 2.8                                                                                                  | /.8                                                      | 6.500                                       | 12.0                                     |                                  |                                       |
| <u>Hydro-Brake Optimum®</u>                                                                                    | Manhole: 10, D                                           | S/PN: 1.0                                   | 09, Volum                                | ne (m³):                         | : 18.8                                |
|                                                                                                                | Unit Reference                                           | MD-SHE-010                                  | 0-5000-135                               | 0-5000                           |                                       |
|                                                                                                                | Design Head (m)                                          | , 110 0110 010                              | T                                        | 1.350                            |                                       |
|                                                                                                                | Design Flow (1/s)                                        |                                             |                                          | 5.0                              |                                       |
|                                                                                                                | Flush-Flo <sup>m</sup>                                   | 4                                           | Calc                                     | ulated                           |                                       |
|                                                                                                                | Objective                                                | e Minimise                                  | upstream s                               | torage                           |                                       |
|                                                                                                                | Diameter (mm)                                            |                                             |                                          | 100                              |                                       |
|                                                                                                                | Invert Level (m)                                         |                                             |                                          | 49.260                           |                                       |
| Minimum Outlet P<br>Suggested Maph                                                                             | ipe Diameter (mm)<br>ole Diameter (mm)                   |                                             |                                          | 1200                             |                                       |
| Suggested Malili                                                                                               | ore prameter (nun)                                       |                                             |                                          | 1200                             |                                       |
| Con                                                                                                            | trol Points                                              | Head (m) F                                  | 'low (l/s)                               |                                  |                                       |
| Desian Pa                                                                                                      | oint (Calculated)                                        | 1.350                                       | 5.0                                      |                                  |                                       |
|                                                                                                                | Flush-Flo™                                               | 0.401                                       | 5.0                                      |                                  |                                       |
|                                                                                                                |                                                          |                                             |                                          |                                  |                                       |
|                                                                                                                | 01002_2015 VD                                            | Solutions                                   |                                          |                                  |                                       |
|                                                                                                                | WI JOZ Z / U I I AP                                      | DUTUE                                       |                                          |                                  |                                       |

| RCD                                                                                  |                                                     |                                             |                               |                                             |                                       | Page 7                                   |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|-------------------------------|---------------------------------------------|---------------------------------------|------------------------------------------|
| 18 Deyley Way                                                                        |                                                     | 1129-1008                                   | -PROP                         | OSED                                        |                                       |                                          |
| Singleton                                                                            |                                                     | CLAYGATE                                    | ROAD                          |                                             |                                       | 4                                        |
| Ashford TN23 5HX                                                                     |                                                     | COLLIER S                                   | TREET                         |                                             |                                       | Micco                                    |
| Date JAN 2016                                                                        |                                                     | Designed                                    | by RA                         | .C                                          |                                       |                                          |
| File 1129-1008-PROPC                                                                 | DSED 1601                                           | Checked b                                   | у                             |                                             |                                       | Diamaye                                  |
| Micro Drainage                                                                       |                                                     | Network 2                                   | 015.1                         |                                             |                                       |                                          |
| <u>Hydro-Brake Op</u>                                                                | timum® Manhol                                       | le: 10, DS                                  | /PN:                          | 1.009, Vol                                  | Lume (m³)                             | : 18.8                                   |
|                                                                                      | Control Po                                          | ints H                                      | lead (m                       | n) Flow (l/s                                | )                                     |                                          |
| М                                                                                    | Mean Flow over H                                    | Kick-Flo®<br>Head Range                     | 0.82                          | - 4.                                        | 0<br>4                                |                                          |
| The hydrological calc<br>Hydro-Brake Optimum®<br>Hydro-Brake Optimum®<br>invalidated | ulations have b<br>as specified.<br>be utilised the | peen based o<br>Should anot<br>en these sto | n the l<br>her tyj<br>rage ro | Head/Discha<br>pe of contro<br>puting calco | rge relati<br>ol device<br>ılations w | onship for the<br>other than a<br>ill be |
| Depth (m) Flow (l/s)                                                                 | Depth (m) Flow                                      | w (l/s) Dept                                | :h (m)                        | Flow (l/s)                                  | Depth (m)                             | Flow (l/s)                               |
| 0.100 3.3                                                                            | 1.200                                               | 4.7                                         | 3.000                         | 7.3                                         | 7.000                                 | 10.8                                     |
| 0.200 4.6                                                                            | 1.400                                               | 5.1                                         | 3.500                         | 7.8                                         | 7.500                                 | 11.2                                     |
| 0.300 4.9                                                                            | 1.600                                               | 5.4                                         | 4.000                         | 8.3                                         | 8.000                                 | 11.6                                     |
| 0.400 5.0                                                                            | 2 000                                               | 5.7                                         | 4.500                         | 8.8                                         | 9 000                                 | 11.9                                     |
| 0.600 4.8                                                                            | 2.200                                               | 6.3                                         | 5.500                         | 9.7                                         | 9.500                                 | 12.5                                     |
| 0.800 4.1                                                                            | 2.400                                               | 6.5                                         | 6.000                         | 10.1                                        |                                       | 1210                                     |
| 1.000 4.3                                                                            | 2.600                                               | 6.8                                         | 6.500                         | 10.5                                        |                                       |                                          |
|                                                                                      |                                                     |                                             |                               |                                             |                                       |                                          |

| RCD                              |                                                               | Page 8     |
|----------------------------------|---------------------------------------------------------------|------------|
| 18 Deyley Way                    | 1129-1008-PROPOSED                                            |            |
| Singleton                        | CLAYGATE ROAD                                                 | 4          |
| Ashford TN23 5HX                 | COLLIER STREET                                                | Micco      |
| Date JAN 2016                    | Designed by RAC                                               |            |
| File 1129-1008-PROPOSED 1601     | Checked by                                                    | Diamaye    |
| Micro Drainage                   | Network 2015.1                                                |            |
| <u>Storage</u>                   | Structures for Storm                                          |            |
| Porous Car Par                   | <u>k Manhole: 3, DS/PN: 1.002</u>                             |            |
| Infiltration Coefficient Base    | 'm/hr) 0.00000 Width (m)                                      | 10.0       |
| Membrane Percolation (m          | m/hr) 1000 Length (m)                                         | 34.0       |
| Max Percolation                  | (1/s) 94.4 Slope (1:X)                                        | 1000.0     |
| Safety H                         | Cactor 2.0 Depression Storage (mm)                            | 5          |
| Invert Leve                      | el (m) 50.500 Cap Volume Depth (m)                            | 3<br>0.000 |
|                                  |                                                               |            |
| <u>Tank or Pond</u>              | Manhole: 5, DS/PN: 1.004                                      |            |
| Inver                            | rt Level (m) 50.000                                           |            |
| Depth (m) Are                    | ea (m <sup>2</sup> ) Depth (m) Area (m <sup>2</sup> )         |            |
| 0.000                            | 40.0   1.000 100.0                                            |            |
| <u>Porous Car Par</u>            | <u>k Manhole: 7, DS/PN: 1.006</u>                             |            |
| Infiltration Coefficient Base (  | (m/hr) 0.00000 Width (m)                                      | 5.0        |
| Membrane Percolation (m          | m/hr) 1000 Length (m)                                         | 120.0      |
| Max Percolation<br>Safety F      | (1/5) 100.7 Slope (1:X)<br>Pactor 2.0 Depression Storage (mm) | 1000.0     |
| Por                              | cosity 0.30 Evaporation (mm/day)                              | 3          |
| Invert Leve                      | el (m) 50.500 Cap Volume Depth (m)                            | 0.000      |
| Porous Car Park                  | Manhole: 10, DS/PN: 1.009                                     |            |
| Infiltration Coofficient Deserve | (m/br) 0 00000 [1]:                                           | 5 0        |
| Membrane Percolation (m          | m/hr) = 1000 Length (m)                                       | 92.0       |
| Max Percolation                  | (l/s) 127.8 Slope (1:X)                                       | 1000.0     |
| Safety E                         | Cactor 2.0 Depression Storage (mm)                            | 5          |
| Por<br>Invert Leve               | cosity 0.30 Evaporation (mm/day)                              | 3          |
|                                  | er (m) 50.500 cap vorume bepch (m)                            | 0.000      |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
|                                  |                                                               |            |
| ©1982-                           | 2015 XP Solutions                                             |            |

| RCD                          |                    | Page 9   |
|------------------------------|--------------------|----------|
| 18 Deyley Way                | 1129-1008-PROPOSED |          |
| Singleton                    | CLAYGATE ROAD      | <u> </u> |
| Ashford TN23 5HX             | COLLIER STREET     | Micco    |
| Date JAN 2016                | Designed by RAC    |          |
| File 1129-1008-PROPOSED 1601 | Checked by         | Diamaye  |
| Micro Drainage               | Network 2015.1     |          |

#### Summary of Results for 180 minute 100 year Winter (Storm)

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

| PN    | US/MH<br>Name | Water<br>Level<br>(m) | Surcharged<br>Depth<br>(m) | Flooded<br>Volume<br>(m³) | Flow /<br>Cap. | Overflow<br>(1/s) | Pipe<br>Flow<br>(l/s) | Status     |
|-------|---------------|-----------------------|----------------------------|---------------------------|----------------|-------------------|-----------------------|------------|
| 1.000 | 1             | 50.719                | 0.369                      | 0.000                     | 0.03           |                   | 3.0                   | FLOOD RISK |
| 1.001 | 2             | 50.719                | 0.419                      | 0.000                     | 0.06           |                   | 8.4                   | FLOOD RISK |
| 1.002 | 3             | 50.719                | 0.469                      | 0.000                     | 0.10           |                   | 12.3                  | FLOOD RISK |
| 1.003 | 4             | 50.719                | 0.519                      | 0.000                     | 0.10           |                   | 13.3                  | FLOOD RISK |
| 1.004 | 5             | 50.718                | 0.448                      | 0.000                     | 0.02           |                   | 6.4                   | FLOOD RISK |
| 1.005 | 6             | 50.718                | 0.528                      | 0.000                     | 0.02           |                   | 5.3                   | FLOOD RISK |
| 1.006 | 7             | 50.718                | 0.628                      | 0.000                     | 0.03           |                   | 4.9                   | FLOOD RISK |
| 1.007 | 8             | 50.634                | 0.574                      | 0.000                     | 0.02           |                   | 5.5                   | SURCHARGED |
| 1.008 | 9             | 50.635                | 0.635                      | 0.000                     | 0.04           |                   | 13.5                  | SURCHARGED |
| 1.009 | 10            | 50.633                | 0.773                      | 0.000                     | 0.01           |                   | 5.1                   | SURCHARGED |

| RCD                      |                       | Page 1     |
|--------------------------|-----------------------|------------|
| 18 Deyley Way            | 1129-1008-PROP        |            |
| Singleton                | CLAYGATE ROAD         | <u> </u>   |
| Ashford TN23 5HX         | COLLIER STREET        | Micco      |
| Date JAN 2016            | Designed by RAC       |            |
| File 1129-1008-PROP.srcx | Checked by            | Dialinatic |
| Micro Drainage           | Source Control 2015.1 |            |

#### Summary of Results for 100 year Return Period

|                  | Sto<br>Eve | rm<br>nt | Max<br>Level<br>(m) | Max<br>Depth<br>(m) | Max<br>Volume<br>(m³) | Status |
|------------------|------------|----------|---------------------|---------------------|-----------------------|--------|
| 360              | min        | Summer   | 47.330              | 1.330               | 199.5                 | O K    |
| <mark>360</mark> | min        | Winter   | 47.490              | 1.490               | 223.5                 | O K    |

| Storm |     | Rain   | Flooded | Time-Peak      |        |
|-------|-----|--------|---------|----------------|--------|
|       | Eve | nt     | (mm/hr) | Volume<br>(m³) | (mins) |
| 360   | min | Summer | 10.975  | 0.0            | 372    |
| 360   | min | Winter | 10.975  | 0.0            | 372    |

| RCD                      |                       | Page 2    |
|--------------------------|-----------------------|-----------|
| 18 Deyley Way            | 1129-1008-PROP        |           |
| Singleton                | CLAYGATE ROAD         | L.        |
| Ashford TN23 5HX         | COLLIER STREET        | Micco     |
| Date JAN 2016            | Designed by RAC       |           |
| File 1129-1008-PROP.srcx | Checked by            | Dialitaye |
| Micro Drainage           | Source Control 2015.1 |           |

#### <u>Rainfall Details</u>

|        | Rainfall Model |         | FSR       | Winter Storms         | Yes   |
|--------|----------------|---------|-----------|-----------------------|-------|
| Return | Period (years) |         | 100       | Cv (Summer)           | 0.750 |
|        | Region         | England | and Wales | Cv (Winter)           | 0.840 |
|        | M5-60 (mm)     |         | 20.000    | Shortest Storm (mins) | 360   |
|        | Ratio R        |         | 0.350     | Longest Storm (mins)  | 360   |
|        | Summer Storms  |         | Yes       | Climate Change %      | +0    |

#### <u>Time Area Diagram</u>

Total Area (ha) 0.404

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|--|
| From: | To:    | (ha)  | From: | To:    | (ha)  | From: | To:    | (ha)  |  |
| 0     | 4      | 0.187 | 4     | 8      | 0.211 | 8     | 12     | 0.006 |  |

| RCD                      | Page 3                |           |  |
|--------------------------|-----------------------|-----------|--|
| 18 Deyley Way            | 1129-1008-PROP        |           |  |
| Singleton                | CLAYGATE ROAD         | Micco     |  |
| Ashford TN23 5HX         | COLLIER STREET        |           |  |
| Date JAN 2016            | Designed by RAC       |           |  |
| File 1129-1008-PROP.srcx | Checked by            | Dialitaye |  |
| Micro Drainage           | Source Control 2015.1 |           |  |

#### Model Details

Storage is Online Cover Level (m) 51.000

#### <u>Tank or Pond Structure</u>

Invert Level (m) 46.000

#### Depth (m) Area (m<sup>2</sup>) Depth (m) Area (m<sup>2</sup>)

0.000 150.0 5.000 150.0

#### APPENDIX F:

#### **Conditions and Limitations**

- 1. This report is for planning purposes and does not constitute a design document. It is the duty of the project designers, to confirm the content of this report and to design the scheme in accordance with their own research and other extraneous parameters.
- 2. This report is produced for Wealden Homes, for FRA and Code for Sustainable Homes assessment purposes and must not be relied upon by any third parties, without the express prior written permission of Wealden Homes.
- 3. The copyright of this report remains the property of Wealden Homes.
- 4. Unless specifically stated otherwise in the report, any recommendations for works given in the report are to be confirmed or modified as appropriate at design stage.
- 5. Under the Construction (Design & Management) Regulations, latest edition, the Client has obligations for ensuring the Health & Safety arising from any construction work. If it is proposed to proceed with construction works, based upon information or recommendations contained in this report, these regulations probably apply. Further details of any issues arising from our report or the client's obligations generally are available on request.

