

Drainage Statement

Site: Land off Wildfell Close, Walderslade Woods, Kent ME5 9RU

Developer: Gen²Property Limited

Prepared by: DHA Environment Eclipse House Eclipse Park Sittingbourne Road Maidstone ME14 3EN

Date: 1st August 2017

1.1 Introduction

- 1.1.1 DHA Environment have been engaged by Gen² Property Limited to prepare a statement relating to surface water drainage to accompany a detailed planning application for the provision of 12 residential dwellings on land off Wildfell Close Walderslade Woods Kent.
- 1.1.2 The detailed planning application reference 15/507909/Full was originally submitted in November 2015 to which KCC in their role as Lead Local Flood Authority raised a holding objection based on insufficient detail relating to the disposal of surface water. The purpose of this report is to demonstrate a suitable method for the disposal of surface water and remove KCC's objection.

1.2 Summary of existing development

Location

1.2.1 The site is located on land off Wildfell Close, Walderslade Woods, Kent and is centred on approximate grid reference 576987, 161730. The site occupies an area of 0.32 hectares and currently consists entirely of greenspace/woodland.

Existing Site

- 1.2.2 A topographical survey of the site is shown on drawings 9486/TS/01 contained within **Appendix 1**. The area of the site to be developed site is generally rectangular in shape and falls from a high point of 163.0m AOD in the South East corner to a low point of 162.1m AOD in the North West corner. The site has the following boundary conditions:
 - South Walderslade Woods Road, elevated 4m above the site.
 - East Wildfell Close with Beechen Hall Beyond.
 - North East Residential development off Sandstone Rise.
 - North Woodland falling away from the site.
 - West Woodland, elevated 3m above the development area.

Existing Drainage

- 1.2.3 Based on the existing topography, the site can be seen to drain overland from South to North with any runoff soaking into the ground.
- 1.2.4 Southern Water asset plans are shown in **Appendix 2** and indicate the location of public foul and surface water sewers in the area. These records do not indicate any private drainage that may be present.
- 1.2.5 In October 2011 the ownership of any private sewer serving more than one property was automatically transferred to the Water Authority, although many of these sewers are yet to be recorded on the asset plans. Known existing drainage can be summarised as follows.

Surface Water

1.2.6 Southern Water asset plans show there to be no public surface water sewers within the development site or surrounding area.

Foul Water

- 1.2.7 Southern Water asset plans show there to be no public foul sewers within the development site.
- 1.2.8 Southern Water asset plans show there to be a 150mm diameter sewer running South to North along Sandstone Rise.

Geology and Hydrogeology

- 1.2.9 Site specific investigation was initially carried by CET Infrastructure on the 20th June 2017. Four number trial pits were excavated at depths between 0.6 and 2.7m below ground. These trial pits showed the ground conditions to comprise of stiff gravelly clay with a high cobble content of flint. Soakage testing was carried out in all four trial pits to BRE 365 and provided Infiltration rates of between 2.1 x 10⁻⁷ and 8.1 x 10⁻⁷ m/s.
- 1.2.10 Given the very low infiltration rates achieved, it was recommended that the use of porous paving and traditional shallow soakaways would not be suitable as the method for the disposal of surface water. The report also recommended that further investigation should be carried out at depth, within the Nodular Chalk Formation in the form of cable percussion boreholes. A copy of the Site investigation is included in **Appendix 3.0**.
- 1.2.11 Based on the recommendations a single borehole soakaway was drilled, tested and installed on the 27th July 2017 by CET Infrastructure. The boreholes encountered strata described as "brown clay with small to large flints" considered most likely to be Clay-with-Flints beneath a mantle of topsoil and extending to a depth of 9.2m below ground level. Chalk described as "clean white chalk" was penetrated from the base of the Clay-with-Flints to a depth of 20m at which the borehole was terminated.
- 1.2.12 The borehole was tested by pumping nominally 1000 litres of water into the borehole for 8 minutes and 10 seconds and subsequently monitoring the fall in head of the water in the borehole. Pumping water into the borehole at a rate of approximately 2 litres/second

only raised the water level to about 14m below ground level. By extrapolating the driving head to a depth of say 4m, the typical depth of a soakaway chamber, this would equate to an unfactored soakage rate of about 5 litres/second. A factor of safety of 2 was applied to the test rate which in this case would give a design rate of 2.5l/s.

- 1.2.13 Following testing, the borehole was installed with a 150mm diameter soakaway liner with the bottom 6m perforated and surrounded by pea gravel. The pea gravel from 20m to 10m bgl. Bentonite was placed around the plain pipe from 10m bgl to ground level. A copy of the site investigation is included in **Appendix 3.0.**
- 1.2.14 Groundwater was not found during the site investigation. Reference has been made to borehole records from the BGS website to ascertain levels of ground water in the area. The nearest borehole is located on Westfield Sole Road approximately 480m to the South East of the proposed site. This borehole encountered groundwater at a level of 48m below ground (127m AOD which can be seen to be 15m below the bottom of the soakaway.

1.3 Proposed Development

1.3.1 The proposals consist of the provision of up to 12 residential development units and associated roads and hardstanding on greenfield site located off Wildfell Close, Walderslade Woods, Kent. The proposed masterplan is indicated on drawing 07.10.2 contained in **Appendix 4.0**.

Proposed Surface Water Drainage Strategy

- 1.3.2 The proposed site has an overall area of 0.32 hectares of which 0.151 hectares will comprise of roads roofs and hardstanding. The remaining part of the site will comprise of gardens and communal green space. The proposed contributing areas are shown on drawing 9484/D/01 contained in **Appendix 5**.
- 1.3.3 The principles of the proposed drainage are shown on drawing 9486/D/02 contained in **Appendix 5**. Sustainable Urban Drainage (SUDs) techniques will be used to deal with the surface water drainage generated by the development. This will replicate the existing drainage regime by dealing with the surface water at source, so as not to increase the risk of downstream flooding.
- 1.3.4 The surface water is to drain to a network of surface water sewers via gullies, rainwater pipes and channel drains before discharging into a new cellular attenuation tank located in the communal area of open space. Catchpit manholes will be provided to intercept any silt before discharging into the attenuation tank.
- 1.3.5 Flows from the attenuation tank will drain into a deep bored soakaway. As described section 1.2.12 a 20m deep borehole was drilled tested and installed as part of the site investigation which provided a factored discharged rate of 2.5 l/s.
- 1.3.6 The drainage system has been designed in Windes and has been designed to accommodate all storms up to and including the 1 in 100 year rainfall event without flooding. The 1 in 100 year plus a 30% allowance for climate change.

1.4 Conclusions

- 1.4.1 The proposal site has an overall area of 0.32 hectares of which 0.151 hectares is to be developed with 12 residential units with associated roads and hardstanding.
- 1.4.2 A Sustainable Urban Drainage system incorporating an underground cellular attenuation tank with a discharge into a deep bored soakaway will be used to accommodate the 1 in 100 year rainfall event with a 30% allowance for climate change.

APPENDIX 1 - TOPOGRAPHICAL SURVEY

APPENDIX 2 – SOUTHERN WATER ASSET PLANS

inst Size Matrix Size Size Size Siz													SEV	VER	RECC	RDS	PA	GE 2	2 OF	2								
		Cover	Invert	Size	Material	Shape		Node	e C	Cover	Invert	Size	Mater	ial Shape		Node	Cover	Invert	Size	Material	Shape		Node	Cover	Invert	Size	Material	Shape
		146.5 146.1	145 144.88	150 UNK 150 150 150	VC UNK VC VC VC	CIRC CIRC CIRC CIRC CIRC																						
14.1.3 14.1.6 16.0 VC 0KC 16.1.7 10.2.5 10.5 VC 0KC 16.1.7 10.2.5 10.5 VC 0KC 16.1.7 10.2.5 10.5 VC 0KC 16.1.7 10.5 VC 0KC 0KC 16.1.7 10.5 VC 0KC 0KC 16.1.7 10.5 VC 0KC 0KC 16.5 10.5 VC 0KC 0KC 15.5.6 10.5 VC 0KC 0KC 16.5.7 10.3.7 10.5 VC 0KC 16.5.6 10.5 VC 0KC 0KC 16.5.7 10.3.7 10.5 VC 0KC 16.5.7 10.5.7 VC 0KC 0KC		149.59 148.23 144.23	146.17 142.21	150 150 150 150 150		CIRC CIRC CIRC CIRC CIRC CIRC																						
		143.13	141.64	150 150 UNK UNK		CIRC CIRC CIRC CIRC																						
	Jack Wit OT=7 Wit OT=7 Wit Jack Wit Wit Wit Wit Wit Hat Hat Wit Wit Wit Wit Wit Hat Hat Hat Wit Wit Wit Wit Wit Hat Hat Hat Hat Wit Wit Wit Wit Hat Hat </td <td>164.27 161.72</td> <td>162.51 160.02</td> <td>150 150 150 150 UNK</td> <td>VC VC VC VC OTHER</td> <td>CIRC CIRC CIRC CIRC CIRC</td> <td></td>	164.27 161.72	162.51 160.02	150 150 150 150 UNK	VC VC VC VC OTHER	CIRC CIRC CIRC CIRC CIRC																						
164.82 163.17 150 VC URC 165.75 163.83 150 VC CRC 166.85 163.18 150 VC CRC 164.82 163.18 150 VC CRC 164.85 163.18 150 VC CRC 164.84 164.96 150.9 VC CRC 164.44 164.96 150.9 VC CRC 165.74 150.9 VC CRC 150.9 VC CRC IRC 156.74 150.9 VC CRC 156.74 150.9 VC CRC 156.84 150.9 VC CRC 155.91 150.9 VC CRC 155.91 150.9 VC CRC <td>14.4.5 10.3 Vic 10.5 10.5 Vic 10.5 10.5 16.5 10.5</td> <td>159.08 155.76 155.05 150.56 165.6 165.42</td> <td>157.46 152.96 150.06 148.74 164 163.79</td> <td>UNK 150 150 150 150 150</td> <td>OTHER VC VC VC VC VC VC VC</td> <td>CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC</td> <td></td>	14.4.5 10.3 Vic 10.5 10.5 Vic 10.5 10.5 16.5 10.5	159.08 155.76 155.05 150.56 165.6 165.42	157.46 152.96 150.06 148.74 164 163.79	UNK 150 150 150 150 150	OTHER VC VC VC VC VC VC VC	CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC																						
144.5 163.18 150 VC CIRC 187.13 168.69 150 VC CIRC 184.4 164.96 150 VC CIRC 149.2 147.76 150 VC CIRC 150 VC CIRC 150 VC CIRC 151.85 150.84 150 VC CIRC 150 152.54 158.95 150 VC CIRC 150 155.41 158.45 150 VC CIRC 152 155.31 158.45 150 VC CIRC 153 155.41 158.45 150 VC CIRC 144.64 144.28 158.97 150 VC CIRC 144.64 156.31 158.98 150 VC CIRC 144.64 144.63 15	14.48 16.3.19 16.5 VC ORE 146.44 14.9.74 16.0 VC ORE 146.45 14.9.76 15.0 VC ORE 146.44 14.9.76 15.0 VC ORE 156.74 15.8 VC ORE 156.74 15.8 VC ORE 156.74 15.0 VC ORE 156.74 150.74 VC ORE 156.75 150.74 VC ORE 156.31 150.74 C ORE 156.31 150.74 C ORE 156.31 150.74 C ORE 156.32 150.74 C ORE 131.42 128.89 150.40 ORE	164.82 165.75	163.17 163.63	UNK 150 150 150		CIRC CIRC CIRC CIRC CIRC																						
ISU VC CIRC 156.74 155.64 150 VC CIRC 161.86 150 VC CIRC 149.48 150 VC CIRC 155.91 154.97 150 VC CIRC 152.26 158.59 150 VC CIRC 155.91 154.97 150 VC CIRC 155.91 154.97 150 VC CIRC 155.91 154.97 150 VC CIRC 154.97 150 VC CIRC CIRC 144.20 142.99 375 VC CIRC 144.23 142.98 150 VC CIRC 131.43 129.68 150 VC CIRC 137.89 136.45 150 VC CIRC 140.63 138.98 150 VC CIRC	Image: Normal Content Image: Normal Content 161.80 160.40 160 VC CRC 161.80 150 VC CRC CRC 162.80 150 VC CRC CRC 162.80 150 VC CRC 162.81 153.91 150 VC CRC 162.82 155.59 150 VC CRC 162.82 155.59 150 VC CRC 162.82 155.59 150 VC CRC 144.20 142.99 375 VC CRC 137.89 135.45 150 VC CRC 140.63 135.98 150 VC CRC	164.85 167.13 166.44 149.2	163.18 165.69 164.96 147.76	150 150 150 150 150 150		CIRC CIRC CIRC CIRC CIRC CIRC CIRC																						
149.48 150 VC CIRC 162.26 158.59 150 VC CIRC 155.91 154.97 150 VC CIRC 165.05 162.52 150 VC CIRC 144.2 142.99 375 VC CIRC 144.2 142.99 150 VC CIRC 131.43 129.69 150 VC CIRC 137.89 136.45 150 VC CIRC 140.63 138.98 150 VC CIRC	143.48 150 VC CIRC 152.28 150 VC CIRC 153.59 150 VC CIRC 144.2 143.97 150 VC CIRC 144.2 143.97 150 VC CIRC 144.2 143.97 150 VC CIRC 144.2 143.98 150 VC CIRC 131.43 123.68 150 VC CIRC 137.89 136.43 150 VC CIRC 140.63 135.38 150 VC CIRC	156.74 161.86	155.64 160.84	150 150 150 150 150		CIRC CIRC CIRC CIRC CIRC CIRC																						
		149.48 162.26 155.91 165.05 144.2 146.08 131.43 137.89 140.63	158.59 154.97 162.52 142.99 145.08 129.69 136.45 138.98	150 150 150 375 150 150 150 150		CIRC CIRC CIRC CIRC CIRC CIRC CIRC CIRC																						
Bits MATERIALS LEGEND - SEWERS Bits A Martine (GW) Improved (GW)<		C F	Orange	Lateral Drain Building Over Agre Treated Effluent Sludge Sewer Catchment	DI Du ement Area GRC Gla GRP Gla MAC Ma MAR Ma PE Pol PF Piti	ctile Iron ass Reinforced Concrete ass Reinforced Plastic sonry in regular Courses sonry in random Courses yethylene ch Fibre	Store endly M Store e	(SW) (F&C) ion (SW) ion (F&C) door (SW)	ST ST VC VC	 Storm Tank (S\ Storm Tank (F8 Vortex chambe Vortex chambe Label ellipse 	W)	T Anod Valve Close Air V. OHB Hatch Hatch	ee ved Valve /alve vh box (SW) vh box (F&C)	A Arched B Barrel C Circular E Egg H Horseshoe	nping Station R Rectangular S Square T Trapezcidal U U Shape X Other				Title:	25622	25_Land	to the west	of Wil				thern Vater	
UNE STYLES/ COLORER MATERIAS LECENO - SEVERS Form	 Sever Catchment Pupple Sever Catchment PF Piptifyer Sever Catchment Sever Catchmen	ι	Light Blue	Section 104 Area Surface Water Surface Water Risi Private	ng Main SI Sp	ypropylene yylnyl Chloride inforced Plastic Matrix un Iron rel	Konstantight d Fc Fc Fc Flushing ch. Fc Fc	door (F&C) I. Mn-e (SW) I. Mn-e (F&C) I. No-e (SW)		Dummy/S24 ma Outfall Penstock cham Damboards	anhole – ber –	→ Direc → Empt → Catcl → Catcl	ction arrow itying valve hpit kaway	H Horseshoe NODE REFERENC 1st digit: hundred metre of 2nd digit: hundred metre of sewer type Iden	x Other CING SYSTEM easting identifier northing identifier ttilfer				Date:		09/0	8/2017						

APPENDIX 3 – SITE INVESTIGATION

GEN ² Property Ltd.
Property and Infrastructure Support
Kent County Council
Sessions House
County Road
Maidstone
Kent
ME14 1XQ

Northdown House Ashford Road Harrietsham Maidstone Kent, ME17 1QW

t: 01622 858545 f: 01622 858544 w: www.cet-uk.com

For the attention of Henry Clark

Geotechnical Department

Our ref: 351932

26th June 2017

Dear Sirs,

RE: WILDFELL CLOSE – SOAKAGE TESTING

BACKGROUND

CET Infrastructure (CET) was instructed by GEN² to undertake a total of four infiltration tests at nominated locations across the land located to the west of Wildfell Close, Chatham, Kent. The works were undertaken by a CET engineer and technician on the 20th June 2017.

At the time of investigation the area of investigation comprised open land that was locally covered with vegetation. The perimeter of the site was surrounded by trees of various heights and species. Access to the site was available through two gates located at the top of Wildfell Close.

SITE LOCATION

The study site comprises an approximately rectangular shaped area situated to the west of Wildfell Close, Chatham. The site is centred on National Grid Reference TQ 769 617 as shown in Figure 1. The area surveyed and the positions of each of the trial pits are shown on Figure 2.

Reference to the publications of the British Geological Survey indicates that the site is underlain by deposits of the Lewes Nodular Chalk Formation which is mantled by superficial deposits of the Clay with Flints Formation. In addition, Head material is mapped in the vicinity of the site. The aforementioned geological formations are described in BGS publications as:

Head	Comprises gravel, sand and clay depending on upslope source and distance from source.
	Poorly sorted and poorly stratified deposits formed mostly by solifluction and/or hillwash
	and soil creep. Essentially comprises sand and gravel, locally with lenses of silt, clay or peat
	and organic material.

Clay with Flints The Clay-with-Flints Formation is a residual deposit formed from the dissolution, decalcification and cryoturbation of bedrock strata of the Chalk Group. It is unbedded and heterogenous. The dominant lithology is orange-brown and red-brown sandy clay with abundant nodules and rounded pebbles of flint. Angular flints are derived from the Chalk.

Lewes Nodular Chalk Formation Composed of hard to very hard nodular chalks and with interbedded soft to medium hard chalks (some grainy) and marls. The softer chalks become more abundant towards the top. Nodular chalks are typically lumpy and first regular seams of nodular flint, some large, commence near the base and continue throughout.

Both Head deposits and Clay with Flints Formation were encountered during the course of the site investigation. The Lewes Nodular Chalk Formation was not proven.

FIELDWORK

In total four trial pits were excavated for the purposes of carrying out soakage testing. Two of the pits, INF1 and INF2, were excavated to depths of 2.6m and 2.7m below ground level, respectively, with the use of a mechanical excavator. The pits were filled with water using a trucked 2000 gallon water tanker. The other two pits, INF3 and INF4, were hand excavated to depths of 0.6m below ground level and were filled using portable 25 litre containers. Pit dimensions and monitoring details for each of the infiltration pits are presented in the table below:

Trial Pit	Depth (m)	Length (m)	Width (m)	Diameter (m)	Initial Water Level (mbgl)	Final Water Level (mbgl)	Total Monitoring Period (hrs)
INF1	2.6	2.1	0.55	N/A	0.15	0.21	6.5
INF2	2.7	2.3	0.6	N/A	0.08	0.17	6.5
INF3	0.6	N/A	N/A	0.25	0	0.17	5.5
INF4	0.6	N/A	N/A	0.25	0	0.15	5.5

Each pit was logged by the CET geotechnical engineer and samples were recovered from each exploratory hole. The engineer's logs are attached to back of this report. Head material was encountered from ground level in INF2, INF3 and INF4 as gravelly CLAY with the gravel comprising flint and chalk. The Head material was encountered to a maximum depth of 0.8m below ground level in INF2. INF3 and INF4 terminated within the Head at depths of 0.6m below ground level.

From ground level in INF1 and beneath the overlying Head stratum in INF2 deposits of the Clay with Flints Formation were encountered as stiff, gravelly CLAY with a high cobble content of flint. The gravel also comprised flint. The Clay with Flints Formation was encountered to 2.6m and 2.7m below ground level in INF1 and INF2, respectively, at which depths the trial pits terminated.

The trial pits remained dry prior to commencing soakage tests however the pits were only open for a short period prior to filling with water and the duration may not have been sufficient for ingress to have been observed in the excavations.

Soakage tests were carried out essentially in accordance with the procedure in BRE Digest 365 except that the pits were filled only once and monitored for no longer than 6.5 hours. The results of these tests produced the following infiltration rates:

	INF	ILTRATION TEST RESULTS
Trial Pit	Infiltration Rate (m/s)	Comment
INF1	2.1 x 10 ⁻⁷	Trial pit did not empty to 25% full during test duration. Analysis based on full duration of test and initial and final water level. Actual rate likely to be lower after third filling and if test emptied.
INF2	3.3 x 10 ⁻⁷	Trial pit did not empty to 25% full during test duration. Analysis based on full duration of test and initial and final water level. Actual rate likely to be lower after third filling and if test emptied.
INF3	5.8 x 10 ⁻⁷	Trial pit did not empty to 25% full during test duration. Analysis based on full duration of test and initial and final water level. Actual rate likely to be lower after third filling and if test emptied.
INF4	8.1 x 10 ⁻⁷	Trial pit did not empty to 25% full during test duration. Analysis based on full duration of test and initial and final water level. Actual rate likely to be lower after third filling and if test emptied.

INTERPRETATION OF RESULTS

Based upon the low infiltration rates observed in all four soakage pits and the type of material encountered during the ground investigation the near surface strata of Head material and Clay with Flints Formation are considered unsuitable for the direct discharge of surface water.

Although the Lewes Nodular Chalk Formation was not encountered during the course of the investigation it may be possible to discharge to these strata if they are encountered. It should be noted that the permeability of the chalk will be almost entirely dependent on secondary porosity, i.e. fracture flow, and further investigation in the form of cable of percussion boreholes would need to be undertaken to identify the depth to the chalk and to ascertain the existing groundwater conditions.

Consideration could be given to utilising a deep borehole soakaway discharging into the Lewes Nodular Chalk Formation, however further field investigation would need to be undertaken in the form of a borehole soakage test to ensure that the permeability of the Lewes Nodular Chalk Formation is sufficient to accommodate the discharge of surface water runoff. Furthermore, the relevant permissions would have to be sought from the Local Authority and Environment Agency.

It is not uncommon for the near surface zone of the chalk to be characterised by the presence of irregular hollows that are termed pipes, swallow holes or dissolution features. These have resulted from the dissolution of the chalk due to percolation of slightly acidic rain/groundwater and they are particularly common at the margins and the base of any overlying deposits. These features may be infilled with material similar to the overlying deposits (Head etc.), or loose debris that has collapsed into a void, or alternatively any overlying relatively competent material may be arching over a void. In addition, man-made cavities, shafts and tunnels may also be present within the chalk. Any changes in stress as may be brought about by changes in groundwater regime or leaking sewers and drains may initiate collapse settlements of any loose void infill or of competent material arching over the void. Therefore, great care must be taken to ensure that discharge to the chalk is within the competent rock strata and not into any of the features mentioned above.

Should further ground investigation conclude that surface water discharge to the chalk is unlikely to be feasible then consideration could be given to utilising some form of SUDS scheme, rainwater collection, harvesting etc. In addition, it may be possible to utilise any existing drainage networks on or around the site however permissions would have to be sought from the relevant authorities.

We trust that the above meets your requirements however please do not hesitate to contact us should you have any questions or queries.

Yours Faithfully,

J. Ma

Gary Clarke BSc MSc Geotechnical Engineer

For and on behalf of CET Infrastructure

Figure 1	 Site Location Plan 	

Figure 2 - Approximate Trial Pit Positions

FIGURE 1 SITE LOCATION PLAN Wildfell Close 351932

FIGURE 2 APPROXIMATE EXPLORATORY HOLE LOCATION PLAN Wildfell Close

351932

Client: GE	N ²					Depth (m) 2.60	Plant used:JCB	TRIAL F	PIT	
Width (m)	0.55		Length (r	m) 2.10		Method of Excavation :	Shoring: None		R	
Co-ordinate	es E N		Ground Lo (mAOD)	evel		Mechanical Excavator	Date Started :20/06/2017	Sheet 1	of 1	
Sar	nples/Ir	n Situ Tes	sts	Change	of Strata		I			
Depth (m)	Туре	Test/Fiel	d Records	Reduced Level (mAOD)	Depth & (<i>Thickness</i>) (m)	De	escription of Strata		Legend	
	D					Stiff, brownish orange, r CLAY with a high cobbl very angular to sub-ang and black flint. (Clay w	mottled red, slightly grave e content of flint. Gravel jular, fine to coarse, white ith Flints)	elly is e, grey		
2. Roots no	ited to the	e stable d base of th	ne trial pit.	e testing.						
Ref:	35193	32		TF	RIAL F			Giving our	all	
Logged:	GC			Syr	mbols and abbre	eviations in accoradance with AGS	i i i i i	•		
Check'd:	A	~			V	Wildfell Close FIG A1				
Appi u.	V									

Client: GE	N ²					Depth (m) 2.70	Plant used:JCB	TRIAL F	PIT		
Width (m)	0.60		Length (r	m) 2.30	I	Method of Excavation :	Method of Excavation : Shoring: None Vechanical Excavator Date Started :20/06/2017				
Co-ordinate	es E N		Ground Lo (mAOD)	evel		Mechanical Excavator	Date Started :20/06/2017	Sheet 1	of 1		
Sar	mples/Ir	n Situ Test	(IIII (OD))	Change	of Strata		I				
Depth (m)	Туре	Test/Field	Records	Reduced Level (mAOD)	Depth & (Thickness)	De	escription of Strata		Legend		
(m) (m) (m) (m) (m) (m) (m) (m)	D			Level (mAOD)	(Thickness) (m) (0.80) (0.80) (0.80) (1.80)	Stiff, white and brownis gravelly CLAY. Gravel to coarse, chalk and flir (Head) Very stiff, brownish oran gravelly CLAY with a hi Gravel is very angular white, grey and black fli (Clay w	h orange, mottled red, slig is angular to sub-rounded it. nge, mottled red, slightly gh cobble content of flint. to sub-angular, fine to coa int. ith Flints)	ghtly I, fine			
General Re 1. Trial pit r 2. Roots no	emarks: noted to boted to the	e stable du	ring soakag e trial pit.	e testing.							
											
Ref:	35193	32		TF	RIAL F	PIT RECORD		Giving our	RUCTURE all		
Logged: Check'd	GC			Syr	mbols and abbre	J abbreviations in accoradance with AGS					
Appr'd:	a	~			v	Vildtell Close FIG A2					

Client: GE	N ²					Depth (m) 0.60	Plant used:None		PIT
Width (m)			Length (r	m)		Method of Excavation :	Shoring: None		ER D
Co-ordinate	es N		Ground Lo	evel		Hand Excavated	Date Started :20/06/2017	Sheet 1	5 of 1
Sar	mples/Ir	n Situ Tes	(IIIAOD)	Change	of Strata				_
Depth (m)	Туре	Test/Field	Records	Reduced Level (mAOD)	Depth & (<i>Thickness</i>)	D	escription of Strata		Legend
Depth (m) - 0.30 - 0.30 	D		Hecords	Level (mAOD)	(Thickness) (m) (0.60)	Stiff, white and brownis gravelly CLAY. Gravel to coarse, chalk and fli (Head) End of T	sh orange, mottled red, sli is angular to sub-rounded nt. <i>rial Pit at 0.60 m</i>	ghtly d, fine	
-					-				
General Re 1. Diameter 2. Trial pit r 3. Roots no	emarks: r of cylinc noted to to bted to the	lrical trial pit be stable du e base of th	: = 0.25m. ring soakag e trial pit.	e testing.					
Ref:	35193	32		TF		PIT RECORD		Giving out	RUCTURE r all
Logged:	GC	;		Syr	nbols and abbre	eviations in accoradance with AGS			
Appr'd:	a	6			V	viidtell Close		FIG A3	

Client: GE	N ²					Depth (m) 0.60	Plant used:None		PIT
Width (m)			Length (r	n)		Method of Excavation :	Shoring: None	NUMBE	R
Co-ordinate	es		Ground Le	evel		Hand Excavated	Date Started :20/06/2017	- INF4 Sheet 1	∎ of 1
Sar	mples/Ir	n Situ Tes	ts	Change	of Strata				
Depth	Туре	Test/Field	d Records	Reduced Level	Depth & (Thickness)	De	escription of Strata		Legend
Depth (m)	D	Test/Field	d Records	Reduced Level (mAOD)	Depth & (Thickness) (0.60) - - - - 0.60 - - - - - - - - - - - - - - - - - - -	De Stiff, brownish orange, r CLAY. Gravel is angula coarse, flint. Rare, sub- gravel of chalk. (Head) <i>End of Tr</i>	escription of Strata mottled red, slightly grave ar to sub-rounded, fine to rounded, fine and mediu ial Pit at 0.60 m	sily m	
-					-				
-					-				
-					-				
General Re 1. Diameter 2. Trial pit r 3. Roots no	emarks: r of cylinc noted to b oted to the	Irical trial pi be stable du e base of th	t = 0.25m. ring soakag e trial pit.	e testing.					
Ref:	35193	32		TF		PIT RECORD		Giving our	RUCTURE r all
Logged: Check'd	GC	Solution (1998)		Syn	nbols and abbre				
Appr'd:	a				V	VIIATEII CIOSE		FIG A4	

Chris Smoker

From: Sent: To: Subject: Phil West <phil.west@cet-uk.com> 02 August 2017 14:58 Chris Smoker RE: Wildfell Close

Hi Chris

The borehole soakaway was drilled, tested and installed at the above site on 27 July 2017. The below presents a summary of the ground conditions encountered, the results if the soakage test and details of the installation.

GROUND CONDITIONS

The boreholes encountered strata described as "brown clay with small to large flints" considered most likely to be Clay-with-Flints beneath a mantle of topsoil and extending to a depth of 9.2m below ground level. Chalk described by the driller as "clean white chalk" was penetrated from the base of the Clay-with-Flints to a depth of 20m at which the borehole was terminated.

SOAKAGE TEST

The borehole was tested by pumping nominally 1000 litres of water into the borehole in 8 minutes and 10 seconds and subsequently monitoring the fall in head of the water in the borehole. Pumping water into the borehole at a rate of approximately 2 litres/second only raised the water level to about 14m below ground level. By extrapolating the driving head to a depth of say 4m, the typical depth of a soakaway chamber, this would equate to an unfactored soakage rate of about 5 litres/second. Typically a factor of safety of 2 is applied to the test rate which in this case would give a design rate of 2.5l/s.

INSTALLATION

Following testing the borehole was installed with a 150mm diameter soakaway liner with the bottom 6m perforated and surrounded by pea gravel. The pea gravel from 20m to 10m bgl. Bentonite was placed around the plain pipe from 10m bgl to ground level. A weir head has been used to cap the borehole and when the liner has been cut down to the correct level within the chamber this should be reinstalled at the top of the pipe to prevent floating debris entering the pipe.

I trust that this meets with your requirements and that if you have any queries you will not hesitate to contact me.

Regards

Phil

Phillip J West *BSc MSc CEng MICE* Consultancy Manager

T: 01622 858545 | M: 07951 297404 | E: phil.west@cet-uk.com W: www.cet-uk.com Northdown House, Ashford Road, Harrietsham, Nr Maidstone, Kent, ME17 1QW

APPENDIX 4 – PROPOSED MASTERPLAN

PROPOSED RESIDENTIAL DEVELOPMENT: Walderslade Round Wood Site, Boxley

This drawing is the copyright of **guy hollaway** architects and should not be copied or reproduced without written consent All dimensions are to be checked on site prior to fabrication and the Architect should be notified of any discrepancy

EXISTING TREES

NEW TREES

EXISTING PROPERTIES

ORDNANCE SURVEY GRID

LINE OF EXISTING TREE CANOPY

London | Phoenix Yard | 65 Kings Cross Road | London | WC1X 9LW

Kent | The Tramway Stables | Rampart Road | Hythe | Kent | CT21 5BG

T +44 (0)1303 260515 | F +44 (0)1303 268214 | E london@guyhollaway.co.uk | W www.guyhollaway.co.uk

T +44 (0)1303 260515 | F +44 (0)1303 268214 | E kent@guyhollaway.co.uk | W www.guyhollaway.co.uk

guy hollaway

1:1250 & 1:200

Drawn dbw&ag

Chk'd

Drawing Number 07.10.02

APPENDIX 5 – PROPOSED DRAINAGE

DHA Transport Ltd				Page 1
Eclipse House Eclipse Park	Wildfel	L Close		
Sittingbourne Road	Proposed	d tank		4
Maidstone ME14 3EN				- Com
Date 04/08/2017 14:33	Designer	by Chris		MICIO
File tank grav	Chockod	by		Drainage
	Checked	y 7	• 1	
Causeway	Source (control 2015	•.⊥	
Cummorate of Doculta	for 100	ann Datumn I	D_{a}	
Summary of Results	101 100 y	ear Recurn i	Period (+30%)	
Half D	rain Time :	325 minutes.		
Storm Max Max	Max	Max	Max Max	Status
Event Level Dept	h Infiltrat	ion Control Σ	Outflow Volume	
(m) (m)	(1/5)	(1/5)	(1/S) (m ²)	
15 min Summer 160.675 0.87	5	0.0 2.5	2.5 47.4	O K
30 min Summer 160.922 1.12	2	0.0 2.5	2.5 60.7	O K
60 min Summer 161.138 1.33	8	0.0 2.5	2.5 72.4	ОК
120 min Summer 161.293 1.49	3	0.0 2.5	2.5 80.9	ОК
100 min Summer 161.351 1.55 240 min Summer 161 366 1 56	⊥ 6	0.0 2.5 0.0 2.5	∠.5 84.0 2.5 84.9	OK
360 min Summer 161.365 1.56	5	0.0 2.5	2.5 84.8	0 K
480 min Summer 161.348 1.54	8	0.0 2.5	2.5 83.8	O K
600 min Summer 161.320 1.52	0	0.0 2.5	2.5 82.3	ОК
720 min Summer 161.284 1.48	4	0.0 2.5	2.5 80.3	O K
960 min Summer 161.196 1.39	6	0.0 2.5	2.5 75.6	0 K
1440 min Summer 161.003 1.20	3	0.0 2.5	2.5 65.2	ОК
2160 min Summer 160.744 0.94	4	0.0 2.5	2.5 51.1	OK
4320 min Summer 160.329 0.74	9	0.0 2.5	2.5 40.4	OK
5760 min Summer 160.288 0.48	8	0.0 2.2	2.2 26.4	O K
7200 min Summer 160.274 0.47	4	0.0 1.8	1.8 25.6	O K
8640 min Summer 160.264 0.46	4	0.0 1.6	1.6 25.1	O K
10080 min Summer 160.256 0.45	6	0.0 1.4	1.4 24.7	0 K
15 min Winter 160.783 0.98	3	0.0 2.5	2.5 53.2	ОК
Storm	Rain Floo	ded Discharge	Time-Peak	
Event	(mm/hr) Vol	ume Volume	(mins)	
	(m	3) (m3)		
15 min Summer 1	172.371	0.0 27.1	18	
30 min Summer 3	111.955	0.0 41.7	33	
60 min Summer	68.611	0.0 56.0	62	
120 min Summer	40.367	0.0 69.8	122	
180 min Summer 240 min Summer	∠9.44⊥ 23.480	0.0 78.4 0.0 84 7	180 234	
360 min Summer	17.026	0.0 94.0	288	
480 min Summer	13.532	0.0 100.9	348	
600 min Summer	11.315	0.0 106.5	416	
720 min Summer	9.772	0.0 111.1	484	
960 min Summer	7.746	0.0 118.7	618	
1440 min Summer	5.574	U.U 129.9	880	
2100 min Summer	4.004	0.0 150 2	1588	
4320 min Summer	2.268	0.0 163.2	2248	
5760 min Summer	1.793	0.0 173.2	2936	
7200 min Summer	1.494	0.0 181.4	3664	

0.0

0.0

0.0

©1982-2015 XP Solutions

188.3

194.3

33.0

4392

5088

18

8640 min Summer 1.287 10080 min Summer 1.135

15 min Winter 172.371

DHA Transport Ltd							Page 2
Eclipse House Ecli	pse Park	Wild	dfell C	lose			
Sittingbourne Road		Prop	posed ta	ank			4
Maidstone ME14 3EN							Misso
Date 04/08/2017 14:3	3	Desi	aned b	v Chris			MILIU
File tank.srcx		Cheo	ked by	<u>L</u>			Urainage
Causeway		Sour	ce Cont	trol 2015	.1		
Summary	of Results	for 1	00 year	Return F	Period (+30%)	
			_				
Storm	Max Ma:	x	Max	Max	Max	Max	Status
Event	Level Dep	th Infil	ltration	Control S	Outflow	Volume	
	(m) (m) (1/s)	(1/s)	(1/s)	(m³)	
30 min Winter	161.060 1.2	60	0.0	2.5	2.5	68.3	ОК
60 min Winter	161.306 1.5	06	0.0	2.5	2.5	81.5	O K
120 min Winter	161.487 1.6	87	0.0	2.5	2.5	91.3	O K
180 min Winter	161.559 1.7	59	0.0	2.5	2.5	95.3	ОК
240 min Winter	161.585 1.7	85	0.0	2.5	2.5	96.6	O K
480 min Winter	161.569 1.7	39 39	0.0	∠.5 2.5	2.5	95.8	OK
600 min Winter	161.486 1.6	32 86	0.0	2.5	2.5	91.3	0 K 0 K
720 min Winter	161.427 1.6	27	0.0	2.5	2.5	88.1	0 K
960 min Winter	161.292 1.4	92	0.0	2.5	2.5	80.8	O K
1440 min Winter	161.000 1.2	00	0.0	2.5	2.5	65.0	O K
2160 min Winter	160.619 0.8	19	0.0	2.5	2.5	44.3	O K
2880 min Winter	160.366 0.5	66	0.0	2.5	2.5	30.7	O K
4320 min Winter	160.281 0.4	81	0.0	2.0	2.0	26.0	O K
5760 min Winter	160.264 0.4	64 52	0.0	1.6	1.6	25.1	OK
8640 min Winter	160.253 0.4	53 46	0.0	1.3	1.3	24.5	OK
10080 min Winter	160.241 0.4	41	0.0	1.0	1.0	23.9	ОК
				.			
	Storm	Rain	Flooded	Discharge	Time-Pea	ak	
	Event	(mm/nr)	(m ³)	volume (m ³)	(mins)		
			(111)	(111)			
30	min Winter	111.955	0.0	49.3		33	
60	min Winter	68.611	0.0	65.4	(52	
120	min Winter	40.367	0.0	80.7	12	20	
180	min Winter	29.441	0.0	90.4	.⊥ 1	/6	
360	min Winter	17 026	0.0	97.5 107 9	<u>د</u> ع	34	
480	min Winter	13.532	0.0	115.7	3'	76	
600	min Winter	11.315	0.0	121.9	45	52	
720	min Winter	9.772	0.0	127.1	52	28	
960	min Winter	7.746	0.0	135.5	6'	74	
1440	min Winter	5.574	0.0	148.0	95	52	
2160	min Winter	4.004	0.0	161.2	132	10	
2880 4220	min Winter	3.103 2 260	0.0	1/U.9 125 /	151 201	50 10	
5760	min Winter	1.793	0.0	196.6	29	36	
7200	min Winter	1.494	0.0	205.7	358	84	
8640	min Winter	1.287	0.0	213.5	440	80	
10080	min Winter	1.135	0.0	220.2	504	48	
1							

DHA Transport Ltd	Page 3	
Eclipse House Eclipse Park	Wildfell Close	
Sittingbourne Road	Proposed tank	L
Maidstone ME14 3EN		Micco
Date 04/08/2017 14:33	Designed by Chris	
File tank.srcx	Checked by	Diamaye
Causeway	Source Control 2015.1	

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	26.250	Shortest Storm (mins) 15
Ratio R	0.400	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +30

Time Area Diagram

Total Area (ha) 0.151

Time	(mins)	Area		
From:	То:	(ha)		
0	4	0.151		

©1982-2015 XP Solutions

DHA Transpo	ort Ltd						Page 4	
Eclipse Hou	ise Ecli	nse Park	Wildfe	ll Close	2			
Sittingbour	rne Road	PDC LGLH	Propos	sed tank	-		4	
Maidstone	ME14 3EN		110000	Jea caim			1 mm	
	ME14 JEN	2	Dogiar	od by Ch	ria		Micro	
Date 04/00/	2017 14.3	5	Desigi	ieu by ci	ILTR		Drainace	
File talk.s	SICX		Checke		0015 1		J	
Causeway			Source	e Control	2015.1			
			Model D	otoila				
Model Details								
Storage is Online Cover Level (m) 162,500								
		<u>Cellul</u>	ar Stora	age Struc	cture			
			_					
	Tnfiltrati	Inve on Coofficient	ert Level	(m) 159.8 (hr) 0.000	300 Safety 1	Factor 2.0		
	Infiltrati	on Coefficient	: Side (m	/hr) 0.000)00 PO.	LOSILY 0.95		
Dej	oth (m) Area	a (m²) Inf. A	rea (m²)	Depth (m)	Area (m²)	Inf. Area (1	m²)	
	0.000	57.0	0.0	1.300	57.0		0.0	
	0.100	57.0	0.0	1.400	57.0		0.0	
	0.200	57.0	0.0	1.500	57.0		0.0	
	0.300	57.0	0.0	1.600	57.0		0.0	
	0.400	57.0	0.0	1.700	57.0		0.0	
	0.500	57.0	0.0	1.800	57.0		0.0	
	0.600	57.0	0.0	1.900	0.0		0.0	
	0.700	57.0	0.0	2.000	0.0		0.0	
	0.800	57.0	0.0	2.100	0.0		0.0	
	0.900	57.0	0.0	2.200	0.0		0.0	
	1.000	57.0	0.0	2.300	0.0		0.0	
	1.200	57.0	0.0	2.400	0.0		0.0	
	De	epth/Flow Re	elations	hip Outf	low Contr	ol		
		-		() 160 0	0.0			
		Inve	rt Level	(m) 160.2	00			
Depth (m)	Flow (l/s)	Depth (m) Flo	ow (1/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)	
0.100	2.5000	0.900	2.5000	1.700	2.5000	2.500	0.0000	
0.200	2.5000	1.000	2.5000	1.800	2.5000	2.600	0.0000	
0.300	2.5000	1.100	2.5000	1.900	0.0000	2.700	0.0000	
0.400	2.5000	1.200	2.5000	2.000	0.0000	2.800	0.0000	
0.500	2.5000	1.300	2.5000	2.100	0.0000	2.900	0.0000	
0.600	2.5000	1.400	2.5000	2.200	0.0000	3.000	0.0000	
0.700	2.5000	1.500	2.5000	2.300	0.0000			
0.800	2.5000	1.000	2.5000	2.400	0.0000			
©1982-2015 XP Solutions								
		81702	. 2010 A	- SOTUCE	~			